[1] |
高郯, 李江荣, 卢杰, 等. 色季拉山急尖长苞冷杉林不同坡向土壤养分及肥力研究[J]. 生态学报, 2020, 40(4): 1331 − 1341.
GAO Tan, LI Jiangrong, LU Jie, et al. Soil nutrient and fertility of different slope directions in the Abies georgei var. smithii forest in Sejila Mountain [J]. Acta Ecologica Sinica, 2020, 40(4): 1331 − 1341. |
[2] |
QIN Zihan. Research on the spatial variability of soil nutrients prediction based on GIS [J]. Advanced Materials Research, 2013, 791/793: 1681 − 1685. |
[3] |
FU Weihun, TUNNEY H, ZHANG Chaosheng. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application [J]. Soil &Tillage Research, 2010, 106(2): 185 − 193. |
[4] |
FU Weijun, ZHANG Keli, ZHANG Chaosheng, et al. Using Moran’ s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots [J]. Journal of Plant Nutrition and Soil Science, 2011, 174(5): 785 − 798. |
[5] |
王淑彬, 徐慧芳, 宋同清, 等. 广西森林土壤主要养分的空间异质性[J]. 生态学报, 2014, 34(18): 5292 − 5299.
WANG Shubin, XU Huifang, SONG Tongqing, et al. Spatial heterogeneity of the main nutrients in Guangxi forest soils [J]. Acta Ecologica Sinica, 2014, 34(18): 5292 − 5299. |
[6] |
柳丽娜, 金爱武. 集约经营毛竹林土壤养分空间变异特征初探[J]. 浙江农林大学学报, 2011, 28(5): 828 − 832.
LIU Lina, JIN Aiwu. Spatial variability of soil nutrients for an intensively managed Phyllostachys pubescens forest [J]. Journal of Zhejiang A&F University, 2011, 28(5): 828 − 832. |
[7] |
邹佳何, 王海燕, 张美娜, 等. 温带云冷杉针阔混交林土壤养分的空间分布特征及影响因素[J]. 应用与环境生物学报, 2021, 27(6): 1554 − 1562.
ZOU Jiahe, WANG Haiyan, ZHANG Meina, et al. Spatial distribution characteristics and influence factors of soil nutrients in temperate mixed spruce-fir coniferous and broadleaf forests [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1554 − 1562. |
[8] |
FU Weijun, DONG Jiaqi, DING Lizhong, et al. Spatial correlation of nutrients in a typical soil-hickory system of southeastern China and its implication for site-specific fertilizer application[J/OL]. Soil Tillage Research, 2022, 217: 105265[2022-02-09]. doi: 10.1016/j.still.2021.105265. |
[9] |
董佳琦, 张勇, 傅伟军, 等. 香榧主产区林地土壤养分空间异质性及其肥力评价[J]. 生态学报, 2021, 41(6): 2292 − 2304.
DONG Jiaqi, ZHANG Yong, FU Weijun, et al. Spatial variation of soil nutrients and evaluation of integrated soil fertility in Torreya grandis cv. Merrillii region [J]. Acta Ecologica Sinica, 2021, 41(6): 2292 − 2304. |
[10] |
牛文鹏, 李青圃, 李铖, 等. 珠江三角洲土壤养分多尺度空间分异及环境驱动力[J]. 生态环境学报, 2021, 30(4): 743 − 755.
NIU Wenpeng, LI Qingpu, LI Cheng, et al. Multi-scale spatial variability and environmental drivers of soil nutrient distributions in the Pearl River Delta, South China [J]. Ecology and Environmental Sciences, 2021, 30(4): 743 − 755. |
[11] |
李超, 李文峰. 高原耕地土壤养分空间分布与影响因子相关性研究[J]. 土壤通报, 2014, 45(5): 1113 − 1118.
LI Chao, LI Wenfeng. Study on the relations between the spatial distribution of plateau cultivated soil nutrients and impact factors [J]. Chinese Journal of Soil Science, 2014, 45(5): 1113 − 1118. |
[12] |
姜霓雯, 童根平, 叶正钱, 等. 浙江清凉峰自然保护区土壤肥力指标空间变异及其影响因素[J]. 生态学报, 2022, 42(6): 1 − 12.
JIANG Niwen, TONG Genping, YE Zhengqian, et al. Spatial variability of soil fertility properties and its affecting factors of Qingliangfeng Nature Reserve, Zhejiang [J]. Acta Ecologica Sinica, 2022, 42(6): 1 − 12. |
[13] |
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO Shidan. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. |
[14] |
FU Weijun, ZHAO Keli, JIANG Peikun, et al. Field-scale variability of soil test phosphorus and other nutrients in grasslands under long-term agricultural managements [J]. Soil Research, 2013, 51(6): 503 − 512. |
[15] |
李龙, 姚云峰, 秦富仓, 等. 赤峰市黄花甸子流域土壤有机碳含量的空间变异特征研究[J]. 环境科学学报, 2014, 34(3): 742 − 748.
LI Long, YAO Yunfeng, QIN Fucang, et al. Spatial variations of organic carbon of Huanghuadianzi watershed in Chifeng [J]. Acta Scientiae Circumstantiae, 2014, 34(3): 742 − 748. |
[16] |
宋轩, 李立东, 寇长林, 等. 黄水河小流域土壤养分分布及其与地形的关系[J]. 应用生态学报, 2011, 22(12): 3163 − 3168.
SONG Xuan, LI Lidong, KOU Changlin, et al. Soil nutrient distribution and its relations with topography in Huangshui River drainage basin [J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3163 − 3168. |
[17] |
陈涛, 常庆瑞, 刘京, 等. 黄土高原南麓县域耕地土壤速效养分时空变异[J]. 生态学报, 2013, 33(2): 554 − 564.
CHEN Tao, CHANG Qingrui, LIU Jing, et al. Temporal and spatial variability of soil available nutrients in arable lands of Heyang County in South Loess Plateau [J]. Acta Ecologica Sinica, 2013, 33(2): 554 − 564. |
[18] |
张福锁. 测土配方施肥技术要览[M]. 北京: 中国农业大学出版社, 2006.
ZHANG Fusuo. Technical Overview of Soil testing and Formula Fertilization[M]. Beijing: China Agricultural University Press, 2006. |
[19] |
王政权, 王庆成. 森林土壤物理性质的空间异质性研究[J]. 生态学报, 2000, 20(6): 945 − 950.
WANG Zhengquan, WANG Qingcheng. The spatial heterogeneity of soil physical properties in forests [J]. Acta Ecologica Sinica, 2000, 20(6): 945 − 950. |
[20] |
TEFERI T, ROBERT L H. Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurements [J]. Soil Science, 1998, 163(2): 155 − 165. |
[21] |
郭旭东, 傅伯杰, 陈利顶, 等. 低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J]. 地理学报, 2001, 56(4): 447 − 455.
GUO Xudong, FU Bojie, CHEN Liding, et al. Effects of land use patterns on soil quality in low hilly region: a case study of Zunhua City, Hebei Province [J]. Acta Geographica Sinica, 2001, 56(4): 447 − 455. |
[22] |
杜可, 王乐, 张淑香, 等. 黑土区县域土壤养分空间分布特征及其影响因子[J]. 植物营养与肥料学报, 2018, 24(6): 1465 − 1474.
DU Ke, WANG Le, ZHANG Shuxiang, et al. Spatial distribution characteristics and influencing factors of soil nutrients in black soil region counties [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1465 − 1474. |
[23] |
SUMFLETH K, DUTTMANN R. Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators [J]. Ecological Indicators, 2008, 8(5): 485 − 501. |
[24] |
赵青, 刘爽, 陈凯, 等. 武夷山自然保护区不同海拔甜槠天然林土壤有机碳变化特征及影响因素[J]. 生态学报, 2021, 41(13): 5328 − 5339.
ZHAO Qing, LIU Shuang, CHEN Kai, et al. Change characteristics and influencing factors of soil organic carbon in Castanopsis eyrei natural forests at different altitudes in Wuyishan Nature Reserve [J]. Acta Ecologica Sinica, 2021, 41(13): 5328 − 5339. |
[25] |
苗娟, 周传艳, 李世杰, 等. 不同林龄云南松林土壤有机碳和全氮积累特征[J]. 应用生态学报, 2014, 25(3): 625 − 631.
MIAO Juan, ZHOU Chuanyan, LI Shijie, et al. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages [J]. Chinese Journal of Applied Ecology, 2014, 25(3): 625 − 631. |
[26] |
XU Zhonglin, CHANG Yapeng, LI Lu, et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains [J]. PLoS One, 2018, 13(11): 204 − 130. |
[27] |
武小钢, 郭晋平, 杨秀云, 等. 芦芽山典型植被土壤有机碳剖面分布特征及碳储量[J]. 生态学报, 2011, 31(11): 3009 − 3019.
WU Xiaogang, GUO Jinping, YANG Xiuyun, et al. Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain [J]. Acta Ecologica Sinica, 2011, 31(11): 3009 − 3019. |
[28] |
李青华, 张静, 王力, 等. 黄土丘陵沟壑区山地苹果林土壤干化及养分变异特征[J]. 土壤学报, 2018, 55(2): 503 − 514.
LI Qinghua, ZHANG Jing, WANG Li, et al. Desiccation and nutrient status of the soil in apple orchards in hilly-gully region of the Loess Plateau [J]. Acta Pedologica Sinica, 2018, 55(2): 503 − 514. |
[29] |
NIE Xiaodong, GUO Wang, HUANG Bin, et al. Effects of soil properties, topography and landform on the understory biomass of a pine forest in a subtropical hilly region [J]. Catena, 2019, 176: 104 − 111. |
[30] |
张亚茹, 欧阳旭, 褚国伟, 等. 鼎湖山季风常绿阔叶林土壤有机碳和全氮的空间分布[J]. 应用生态学报, 2014, 25(1): 19 − 23.
ZHANG Yaru, OUYANG Xu, CHU Guowei, et al. Spatial heterogeneity of soil organic carbon and total nitrogen in a monsoon evergreen broadleaf forest in Dinghushan, Guangdong, China [J]. Chinese Journal of Applied Ecology, 2014, 25(1): 19 − 23. |
[31] |
杨家慧, 谭伟, 冯艳. 马尾松人工林土壤养分空间分布特征及其与地形因子的相关性分析[J]. 西南林业大学学报(自然科学), 2020, 40(4): 23 − 29.
YANG Jiahui, TAN Wei, FENG Yan. Spatial distribution characteristics of soil nutrients and the correlation with topographic factors in Pinus massoniana [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(4): 23 − 29. |
[32] |
张伟, 刘淑娟, 叶莹莹, 等. 典型喀斯特林地土壤养分空间变异的影响因素[J]. 农业工程学报, 2013, 29(1): 93 − 101.
ZHANG Wei, LIU Shujuan, YE Yingying, et al. Spatial variability of soil nutrients and influencing factors in typical karst virgin forest [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 93 − 101. |
[33] |
刘丛强. 生物地球化学过程与地表物质循环——西南喀斯特土壤-植被系统生源要素循环[M]. 北京: 科学出版社, 2009.
LIU Congqiang. Biogeochemical Processes and Surface Material Cycling: Biogenic Elements Cycling of Soil-vegetation System in Karst Region of Southwest China [M]. Beijing: Science Press, 2009. |
[34] |
刘潘伟, 高鹏, 刘晓华, 等. 大岗山流域土壤碳氮要素空间分布特征及影响因素[J]. 中国水土保持科学, 2018, 16(2): 73 − 79.
LIU Panwei, GAO Peng, LIU Xiaohua, et al. Spatial distribution and influential factors of soil carbon and nitrogen in Dagangshan Watershed [J]. Science of Soil and Water Conservation, 2018, 16(2): 73 − 79. |
[35] |
张岩松, 雷泽勇, 于东伟, 等. 沙质草地营造樟子松林后土壤容重的变化及其影响因子[J]. 生态学报, 2019, 39(19): 7144 − 7152.
ZHANG Yansong, LEI Zeyong, YU Dongwei, et al. Changes in soil bulk density and its influencing factors after sandy grassland afforestation with Pinus sylvestris var. mongolica [J]. Acta Ecologica Sinica, 2019, 39(19): 7144 − 7152. |
[36] |
杨玉海, 陈亚宁, 李卫红, 等. 伊犁河谷不同植被带下土壤有机碳分布[J]. 地理学报, 2010, 65(5): 605 − 612.
YANG Yuhai, CHEN Yaning, LI Weihong, et al. Soil organic carbon distribution under different vegetation belts in Ili River Valley [J]. Acta Geographica Sinica, 2010, 65(5): 605 − 612. |
[37] |
王阳, 章明奎. 不同类型林地土壤颗粒态有机碳和黑碳的分布特征[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 193 − 202.
WANG Yang, ZHANG Mingkui. Distribution characters of particulate organic carbon and black carbon in soils under different forestry vegetations [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(2): 193 − 202. |
[38] |
刘跃建, 李强, 马明东. 四川西北部主要森林植被类型土壤养分库比较研究[J]. 水土保持学报, 2010, 24(5): 146 − 152.
LIU Yuejian, LI Qiang, MA Mingdong. Comparison of soil nutrient storage of forest vegetation type in northwest of Sichuan Province [J]. Journal of Soil and Water Conservation, 2010, 24(5): 146 − 152. |