[1] |
钱啸虎, 徐垠, 胡之璧, 等. 中国植物志: 第16卷第1分册[M]. 北京: 科学出版社, 1985: 25.
QIAN Xiaohu, XU Yin, HU Zhibi, et al. Flora Reipublicae Popularis Sinicae: Vol. 16(1) [M]. Beijing: Science Press, 1985: 25. |
[2] |
徐炳声, 林巾箴, 俞志洲, 等. 换锦花和中国石蒜的种间杂交[J]. 园艺学报, 1986, 4(4): 283 − 284.
XU Bingsheng, LIN Jinzhen, YU Zhizhou, et al. Interspecific hybridization between Lycoris sprengeri and Lycoris chinensis [J]. Acta Horticulturae Sinica, 1986, 4(4): 283 − 284. |
[3] |
张定成, 孙叶根, 郑艳, 等. 三倍体换锦花在安徽发现[J]. 植物分类学报, 1999, 37(1): 36 − 40.
ZHANG Dingcheng, SUN Yegen, ZHENG Yan, et al. The discovery of triploid Lycoris sprengeri Comes ex Baker from Anhui, China [J]. Acta Phytotaxonomica Sinica, 1999, 37(1): 36 − 40. |
[4] |
ZHANG Fengjiao, ZHUANG Weibin, SHU Xiaochun, et al. Complete chloroplast genome of Lycoris sprengeri (Amaryllidaceae) and genetic comparison [J]. Mitochondrial DNA Part B, 2019, 4(2): 3577 − 3578. |
[5] |
YANG Feng, LI Chaohan, DEBATOSH D, et al, Comprehensive transcriptome and metabolic profiling of petal color development in Lycoris sprengeri [J/OL]. Frontiers in Plant Science, 2021, 12: 747131 [2023-06-15]. doi: 10.3389/fpls.2021.747131. |
[6] |
王黎, 周琪, 高燕会. 石蒜属种间杂交种的鉴定和分子身份证构建[J]. 浙江农林大学学报, 2022, 39(3): 562 − 570.
WANG Li, ZHOU Qi, GAO Yanhui. Construction of molecular identification card of Lycoris interspecific hybrids [J]. Journal of Zhejiang A&F University, 2022, 39(3): 562 − 570. |
[7] |
洪艳, 武宇薇, 宋想, 等. 光照调控园艺作物花青素苷生物合成的分子机制[J]. 园艺学报, 2021, 48(10): 1983 − 2000.
HONG Yan, WU Yuwei, SONG Xiang, et al. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops [J]. Acta Horticulturae Sinica, 2021, 48(10): 1983 − 2000. |
[8] |
GU Kaidi, WANG Chukun, HU Dagang, et al. 2019. How do anthocyanins paint our horticultural products? [J]. Scientia Horticulturae, 249: 257−262. |
[9] |
王峰, 王秀杰, 赵胜男, 等. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学, 2020, 53(23): 4904 − 4917.
WANG Feng, WANG Xiujie, ZHAO Shengnan, et al. Light regulation of anthocyanin biosynthesis in horticultural crops [J]. Scientia Agricultura Sinica, 2020, 53(23): 4904 − 4917. |
[10] |
许振渊, 高燕会, 周芬静, 等. 换锦花LsMYB4基因的克隆与表达分析[J]. 园艺学报, 2014, 41(11): 2281 − 2390.
XU Zhenyuan, GAO Yanhui, ZHOU Fenjing, et al. Cloning and expression analysis of LsMYB4 gene in Lycoris sprengeri [J]. Acta Horticulturae Sinica, 2014, 41(11): 2281 − 2390. |
[11] |
侯朔, 高燕会, 童再康. 换锦花LsMYB5基因的克隆与表达分析[J]. 农业生物技术学报, 2019, 27(12): 2164 − 2174.
HOU Shuo, GAO Yanhui, TONG Zaikang. Cloning and expression analysis of LsMYB5 gene in Lycoris sprengeri [J]. Journal of Agricultural Biotechnology, 2019, 27(12): 2164 − 2174. |
[12] |
周洋丽, 侯朔, 郑正权, 等. 基于VIGS基因沉默体系的换锦花LsMYBs基因功能研究[J]. 农业生物技术学报, 2020, 28(6): 974 − 983.
ZHOU Yangli, HOU Shuo, ZHENG Zhengquan, et al. Study on LsMYBs gene function in Lycoris sprengeri based on VIGS gene silencing system [J]. Journal of Agricultural Biotechnology, 2020, 28(6): 974 − 983. |
[13] |
周洋丽. LsMYB4、LsMYB5 调控的换锦花花瓣呈色的分子机制[D]. 杭州: 浙江农林大学, 2020.
ZHOU Yangli. Molecular Mechanism of Petal Color of Lycoris sprengeri Regulated by LsMYB4 and LsMYB5 [D]. Hangzhou: Zhejiang A&F University, 2020. |
[14] |
薛惠敏, 周洋丽, 高燕会. 换锦花花青素合成酶基因(LsANS)的克隆及启动子功能分析[J]. 农业生物技术学报, 2022, 30(8): 1468 − 1479.
XUE Huimin, ZHOU Yangli, GAO Yanhui. Cloning and promoter function analysis of the anthocyanins synthase gene (LsANS) in Lycoris sprengeri [J]. Journal of Agricultural Biotechnology, 2022, 30(8): 1468 − 1479. |
[15] |
蒋婷婷, 高燕会, 童再康. 石蒜属植物实时荧光定量PCR内参基因的选择[J]. 园艺学报, 2015, 42(6): 1129 − 1138.
JIANG Tingting, GAO Yanhui, TONG Zaikang. Selection of reference genes for quantitative real-time PCR in Lycoris [J]. Acta Horticulturae Sinica, 2015, 42(6): 1129 − 1138. |
[16] |
郑正权. 换锦花复色花形成LsMYBs和LsbHLHs基因的筛选和功能初步研究[D]. 杭州: 浙江农林大学, 2021.
ZHENG Zhengquan. Screening and Functional Analysis of Lsmybs and Lsbhlhs Genes Involved in the Formation of Polychromatic Flowers in Lycoris sprengeri [D]. Hangzhou: Zhejiang A&F University, 2021. |
[17] |
刘跃平, 周洋丽, 高燕会. 换锦花花色苷成分及其稳定性[J]. 浙江农林大学学报, 2021, 38(3): 587 − 596.
LIU Yueping, ZHOU Yangli, GAO Yanhui. Effects of physical and chemical factors on anthocyanin stability in Lycoris sprengeri [J]. Journal of Zhejiang A&F University, 2021, 38(3): 587 − 596. |
[18] |
STRACKE R, WERBER M, WEISSHAAR B. The R2R3-MYB gene family in Arabidopsis thaliana [J]. Current Opinion in Plant Biology, 2001, 4(5): 447 − 456. |
[19] |
DUBOS C, STRACKE R, GROTEWOLD E, et al. MYB transcription factors in Arabidopsis [J]. Trends in Plant Science, 2010, 15(10): 573 − 581. |
[20] |
王霜, 雒晓鹏, 姚英俊, 等. 苦荞R2R3-MYB转录因子调控原花青素生物合成的研究[J]. 西北植物学报, 2019, 39(11): 1911 − 1918.
WANG Shuang, LUO Xiaopeng, YAO Yingjun, et al. Characterization of an R2R3-MYB transcription factor involved in the synthesis of proanthocyanidins from Tartary buckwheat [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 1911 − 1918. |
[21] |
王桂青, 姚红, 吴嘉诚, 等. 中国水仙NtMYB7基因的克隆及功能初步研究[J]. 西北植物学报, 2018, 38(8): 1401 − 1410.
WANG Guiqing, YAO Hong, WU Jiacheng, et al. Cloning and functional characterization of NtMYB7 gene in Narcissus tazetta var. chinensis [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8): 1401 − 1410. |
[22] |
吴嘉诚, 王桂青, Muhammad, 等. 中国水仙R2R3-MYB基因NtMYB5的克隆和功能研究[J]. 园艺学报, 2018, 45(7): 1327 − 1337.
WU Jiacheng, WANG Guiqing, Muhammad, et al. Cloning and functional analysis of R2R3-MYB gene NtMYB5 in Narcissus tazetta var. chinensis [J]. Acta Horticulturae Sinica, 2018, 45(7): 1327 − 1337. |
[23] |
樊锦涛. 拟南芥AtMYB73响应干旱机制初探[D]. 保定: 河北农业大学, 2015.
FAN Jintao. Preliminary Exploration for Mechanism of Arabidopsis thaliana AtMYB73 under Drought Stress[D]. Baoding: Agricultural University of Hebei, 2015. |
[24] |
樊锦涛, 蒋琛茜, 邢继红, 等. 拟南芥R2R3-MYB家族第22亚族的结构与功能[J]. 遗传, 2014, 36(10): 985 − 994.
FAN Jintao, JIANG Chenxi, XING Jihong, et al. Structure and function of the 22nd subfamily in Arabidopsis R2R3-MYB family [J]. Hereditas, 2014, 36(10): 985 − 994. |
[25] |
JUNG C, SEO J S, HAN S W, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis [J]. Plant Physiology, 2008, 146(2): 623 − 635. |
[26] |
SEKI M, NARUSAKA M, ISHIDA J, et al. Monitoring the expression proles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray [J]. The Plant Journal, 2002, 31(3): 279 − 292. |
[27] |
TANG Xiaohua, ZHAO Changling, WEN Guosong, et al. Physiological mechanism for anthocyanins to strengthen the drought tolerance of plants [J]. Agricultural Science &Technology, 2014, 15(11): 1935 − 1941. |
[28] |
LI Xiaolan, LÜ Xiang, WANG Xiaohong, et al. Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat [J]. Journal of Integrative Agriculture, 2020, 19(1): 33 − 50. |
[29] |
陈晓丽, 李红兵, 孙振玫, 等. 过表达IbMYB1基因甘薯增强了对土壤干旱胁迫的抗性[J]. 植物生理学报, 2015, 51(9): 1440 − 1446.
CHEN Xiaoli, LI Hongbing, SUN Zhenmei, et al. Overexpression of IbMYB1 gene enhanced tolerance to soil drought stress in sweet potato [J]. Plant Physiology Journal, 2015, 51(9): 1440 − 1446. |
[30] |
LI Yun, MENG Fanlai, ZHAO Changling, et al. Responses of the anthocyanin and osmolyte contents of the Capsicum annuum cultivars planted in Wenshan prefecture of Yunnan Province to the drought stress simulated by PEG-6000 [J]. Agricultural Science &Technology, 2016, 17(6): 1295 − 1300, 1335. |
[31] |
王鸿雪, 刘天宇, 庄维兵, 等. 花青素苷在植物逆境响应中的功能研究进展[J]. 农业生物技术学报, 2020, 28(1): 174 − 183.
WANG Hongxue, LIU Tianyu, ZHUANG Weibing, et al. Research advances in the function of anthocyanin in plant stress response [J]. Journal of Agricultural Biotechnology, 2020, 28(1): 174 − 183. |