| [1] | 郑华斌, 贺慧, 姚林, 等. 稻田饲养动物的生态经济效应及其应用前景[J]. 湿地科学, 2015, 13(4): 510−517. ZHENG Huabin, HE Hui, YAO Lin, et al. Ecological economic effects and its prospects of raising animals in paddy field[J]. Wetland Science, 2015, 13(4): 510−517. |
| [2] | 李兴华, 涂军明, 陈展鹏, 等. 稻蛙绿色种养模式研究及其可持续发展策略[J]. 农学学报, 2020, 10(12): 98−103. LI Xinghua, TU Junming, CHEN Zhanpeng, et al. Rice-frog planting and raising mode and its sustainable development strategy[J]. Journal of Agriculture, 2020, 10(12): 98−103. |
| [3] | 章家恩, 韦生宝, 刘兴, 等. 稻渔综合种养研究进展与展望[J]. 华南农业大学学报, 2024, 45(6): 812−824. ZHANG Jiaen, WEI Shengbao, LIU Xing, et al. Research progress and prospect of integrated rice-fish coculture[J]. Journal of South China Agricultural University, 2024, 45(6): 812−824. |
| [4] | LI Yifan, WU Tiaoyan, WANG Shaodong, et al. Developing integrated rice-animal farming based on climate and farmers choices[J/OL]. Agricultural Systems, 2023, 204: 103554[2024-11-24]. DOI: 10.1016/j.agsy.2022.103554. |
| [5] | CUI Jinlan, LIU Hongbin, WANG Honyuan, et al. Rice-animal co-culture systems benefit global sustainable intensification[J/OL]. Earths Future, 2023, 11(2): e2022EF002984[2024-11-24]. DOI: 10.1029/2022EF002984. |
| [6] | CLAVERO M, LÓPEZ V, FRANCH N, et al. Use of seasonally flooded rice fields by fish and crayfish in a Mediterranean wetland[J]. Agriculture Ecosystems & Environment, 2015, 213: 39−46. |
| [7] | JI Zijun, ZHAO Lufeng, ZHANG Taojie, et al. Coculturing rice with aquatic animals promotes ecological intensification of paddy ecosystem[J/OL]. Journal of Plant Ecology, 2023, 16(6): rtad014[2024-11-24]. DOI: 10.1093/jpe/rtad014. |
| [8] | LIU Jianfang, ZHANG Qian, WANG Qianyi, et al. Gross ecosystem product accounting of a globally important agricultural heritage system: the Longxian rice-fish symbiotic system[J/OL]. Sustainability, 2023, 15(13): 10407[2024-11-24]. DOI: 10.3390/su151310407. |
| [9] | ZHANG Zhen, DU Linsen, XIAO Zhiyu, et al. Rice-crayfish farming increases soil organic carbon[J/OL]. Agriculture Ecosystems & Environment, 2022, 329: 107857[2024-11-24]. DOI: 10.1016/j.agee.2022.107857. |
| [10] | 许超, 靳联娟, 黄利国, 等. 稻-蛙生态共生关键技术及效益分析[J]. 四川农业科技, 2020(5): 58−60. XU Chao, JIN Lianjuan, HUANG Liguo, et al. Key technologies and benefits analysis of rice-frog ecological symbiosis[J]. Sichuan Agricultural Science and Technology, 2020(5): 58−60. |
| [11] | 任依, 姜培坤, 鲁长根, 等. 炭基肥与有机肥替代部分化肥对青紫泥水稻土微生物丰度及酶活性的影响[J]. 浙江农林大学学报, 2022, 39(4): 860−868. REN Yi, JIANG Peikun, LU Changgen, et al. Effects of biochar-based fertilizer and organic fertilizer substituting chemical fertilizer partially on soil microbial abundances and enzyme activities[J]. Journal of Zhejiang A&F University, 2022, 39(4): 860−868 |
| [12] | 姚权, 唐旭, 肖谋良, 等. 缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响[J]. 浙江农林大学学报, 2025, 42(1): 175−184. YAO Quan, TANG Xu, XIAO Mouliang, et al. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system[J]. Journal of Zhejiang A&F University, 2025, 42(1): 175−184. |
| [13] | 孔德雷, 姜培坤. “双碳”背景下种植业减排增汇的途径与政策建议[J]. 浙江农林大学学报, 2023, 40(6): 1357−1365. KONG Delei, JIANG Peikun. Approaches and policy recommendations for reducing emissions and increasing carbon sinks in crop industry under the background of carbon peak and carbon neutrality[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1357−1365. |
| [14] | GUO Lijin, LIN Wei, CAO Cougui, et al. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season[J/OL]. Science of the Total Environment, 2023, 867: 161520[2024-11-24]. DOI: 10.1016/j.scitotenv.2023.161520. |
| [15] | XU Qiang, DAI Linxiu, GAO Pinglei, et al. The environmental, nutritional, and economic benefits of rice-aquaculture animal coculture in China[J/OL]. Energy, 2022, 249: 123723[2024-11-24]. DOI: 10.1016/j.energy.2022.123723. |
| [16] | SUN Xinjia, WANG Haolin, WANG Feijie, et al. Effects of different fertilization patterns on the dietary composition of Procambarus clarkii in a rice-crayfish coculture system[J/OL]. Aquaculture Reports, 2023, 33: 101801[2024-11-24]. DOI: 10.1016/j.aqrep.2023.101801. |
| [17] | DUAN Yuanliang, LI Qiang, ZHANG Lu, et al. Toxic metals in rice-fish co-culture systems and human health[J/OL]. Ecotoxicology and Environmental Safety, 2022, 241: 113797[2024-11-24]. DOI: 10.1016/j.ecoenv.2022.113797. |
| [18] | 徐曼, 邓正春, 顾振华, 等. 稻蛙绿色生态种养技术及效益分析[J]. 作物研究, 2020, 34(4): 384−387. XU Man, DENG Zhengchun, GU Zhenhua, et al. Green ecological breeding technology and benefit analysis of rice and frog[J]. Crop Research, 2020, 34(4): 384−387. |
| [19] | 朱练峰, 房伟平, 庄雪浩, 等. 稻蛙共作对土壤理化特性和水稻产量的影响[J]. 中国稻米, 2023, 29(5): 23−27. ZHU Lianfeng, FANG Weiping, ZHUANG Xuehao, et al. Effects of rice-frog co-cultivation on the physicochemical characteristics of the soil and grain yield[J]. China Rice, 2023, 29(5): 23−27. |
| [20] | 王华君, 王新其, 丁国平, 等. 基于蛙稻生态种养模式氮肥运筹对水稻农艺性状及产量的影响[J]. 上海农业学报, 2016, 32(6): 82−86. WANG Huajun, WANG Xinqi, DING Guoping, et al. Effects of nitrogen application on agronomic traits and yield of rice based on eco-planting and breeding of rice and frog model[J]. Acta Agriculturae Shanghai, 2016, 32(6): 82−86. |
| [21] | 林海雁, 黄倩霞, 邵紫依, 等. 养殖虎纹蛙稻田土壤酶活性及主要养分含量特征[J]. 核农学报, 2018, 32(4): 802−808. LIN Haiyan, HUANG Qianxia, SHAO Ziyi, et al. Characterization of soil enzymatic activities and main nutrient contents in paddy field for eco-planting and breeding rice and frog[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 802−808. |
| [22] | 周雪芳, 朱晓伟, 陈泽恺, 等. 稻蛙生态种养对土壤微生物及无机磷含量的影响[J]. 核农学报, 2016, 30(5): 971−977. ZHOU Xuefang, ZHU Xiaowei, CHEN Zekai, et al. Effect of eco-planting and breeding of rice and frog on soil microorganisms and soluble phosphorus contents[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(5): 971−977. |
| [23] | 郭文啸, 赵琦, 朱元宏, 等. 蛙稻生态种养模式对土壤微生物特性的影响[J]. 江苏农业科学, 2018, 46(5): 57−60. GUO Wenxiao, ZHAO Qi, ZHU Yuanhong, et al. Effects of eco-planting and breeding patterns of rice and frog on soil microbial characteristics[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 57−60. |
| [24] | 孟祥杰, 黄璜, 陈灿, 等. 稻田不同种养模式对土壤肥力的影响[J]. 湖南农业科学, 2021(2): 45−48. MENG Xiangjie, HUANG Huang, CHEN Can, et al. Effect of different cultivation modes on soil fertility in paddy field[J]. Hunan Agricultural Sciences, 2021(2): 45−48. |
| [25] | 李金龙, 徐永福, 王冬武, 等. 黑斑蛙养殖模式对稻田土壤肥力、土壤酶活性的影响及其经济效益[J]. 作物研究, 2019, 33(5): 428−431, 436. LI Jinglong, XU Yongfu, WANG Dongwu, et al. Effects of breeding models of Rana nigromaculata on soil fertility and enzyme activity in paddy field and economic benefit analysis[J]. Crop Research, 2019, 33(5): 428−431, 436. |
| [26] | 陈灿, 黄璜, 郑华斌, 等. 稻田不同生态种养模式对稻米品质的影响[J]. 中国稻米, 2015, 21(2): 17−19. CHEN Can, HUANG Huang, ZHENG Huabin, et al. Effects of different mode of ecological planting and raising on rice quality[J]. China Rice, 2015, 21(2): 17−19. |
| [27] | 李兴华, 陈展鹏, 蔡正军, 等. 稻田套养不同密度黑斑蛙对水稻产量和土壤肥力的影响初探[J]. 湖北农业科学, 2023, 62(5): 5−7. LI Xinghua, CHEN Zhanpeng, CAI Zhengjun, et al. Effects of different densities of Pelophylax nigromaculatus on rice yields and soil fertility in paddy fields[J]. Hubei Agricultural Sciences, 2023, 62(5): 5−7. |
| [28] | 郭天荣, 刘瑞琪, 曾晴, 等. 稻蛙种养对水稻功能叶片和籽粒养分含量及产量构成的影响[J]. 分子植物育种, 2022, 20(15): 5205−5212. GUO Tianrong, LIU Ruiqi, ZENG Qing, et al. Effects of rice-frog co-cultivation on nutrient contents in rice leaves and brown rice and yield components[J]. Molecular Plant Breeding, 2022, 20(15): 5205−5212. |
| [29] | 彭翔, 戴林秀, 李京咏, 等. 稻田综合种养对长江中下游地区水稻产量和稻米品质影响的文献研究[J]. 中国稻米, 2022, 28(4): 55−60. PENG Xiang, DAI Linxiu, LI Jingyong, et al. Effects of comprehensive planting-breeding in paddy fields on yield and quality of rice in the middle and lower reaches of the yangtze river[J]. China Rice, 2022, 28(4): 55−60. |
| [30] | 胡译然, 杜林森, 李奎, 等. 不同放养密度稻虾综合种养模式的水质评估及经济效益评价[J]. 华南农业大学学报, 2024, 45(6): 918−928. HU Yiran, DU Linsen, LI Kui, et al. Water quality assessment and economic benefit evaluation of integrated rice-red crayfish cultivation system under different stocking densities[J]. Journal of South China Agricultural University, 2024, 45(6): 918−928. |
| [31] | 佀国涵, 彭成林, 徐祥玉, 等. 稻虾共作模式对涝渍稻田土壤理化性状的影响[J]. 中国生态农业学报, 2017, 25(1): 61−68. SI Guohan, PENG Chenglin, XU Xiangyu, et al. Effect of integrated rice-crayfish farming system on soil physico-chemical properties in waterlogged paddy soils[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 61−68. |
| [32] | 张晓龙, 杨倩楠, 李祥东, 等. 不同稻田生态种养模式对土壤理化性质及综合肥力的影响[J]. 福建农业学报, 2023, 38(2): 202−209. ZHANG Xiaolong, YANG Qiannan, LI Xiangdong, et al. Effects of crop/animal co-cultivations on physiochemical properties and fertility of rice paddy soil[J]. Fujian Journal of Agricultural Sciences, 2023, 38(2): 202−209. |
| [33] | 汤伟, 陈灿, 黄璜. 不同稻田种养模式对土壤与水体理化性状及水稻产量的影响分析[J]. 作物研究, 2021, 35(5): 490−495. TANG Wei, CHEN Can, HUANG Huang. Effects of different rice cultivation patterns on soil and water physical and chemical properties and rice yield[J]. Crop Research, 2021, 35(5): 490−495. |
| [34] | 刘宇, 曹锦滔, 陈佳琪, 等. 稻田生态种养对土壤性质影响研究进展[J]. 环境生态学, 2021, 3(12): 34−37. LIU Yu, CAO Jintao, CHEN Jiaqi, et al. Progress on effects of ecological planting and rearing on soil properties in rice fields[J]. Environmental Ecology, 2021, 3(12): 34−37. |
| [35] | 李文博, 刘少君, 叶新新, 等. 稻田综合种养模式对土壤生态系统的影响研究进展[J]. 生态与农村环境学报, 2021, 37(10): 1292−1300. LI Wenbo, LIU Shaojun, YE Xinxin, et al. effects of the co-culture of rice and aquatic animals on soil eco-system: a review[J]. Journal of Ecology and Rural Environment, 2021, 37(10): 1292−1300. |
| [36] | 龙丽, 贺慧, 黄璜, 等. 稻田综合种养模式对稻田土壤生态环境效应影响比较分析[J/OL]. 农学学报. 2024-09-20 [2024-11-24]. https://link.cnki.net/urlid/11.6016.S.20240919.1103.002. LONG Li, HE Hui, HUANG Huang, et al. Comparative analysis of impact of integrated rice farming systems on soil ecological environment of paddy fields[J/OL]. Journal of Agriculture, 2024-09-20 [2024-11-24]. https://link.cnki.net/urlid/11.6016.S.20240919.1103.002. |
| [37] | 窦志, 张耀元, 郭威, 等. 稻渔综合种养对土壤和水稻影响的研究进展[J]. 华南农业大学学报, 2024, 45(6): 836−845. DOU Zhi, ZHANG Yaoyuan, GUO Wei, et al. Research progress on the influence of integrated farming of rice and aquatic animal on soil and rice[J]. Journal of South China Agricultural University, 2024, 45(6): 836−845. |