[1] |
李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 2010, 30(5): 1217 − 1226.
LI Shunji, QIU Liping, ZHANG Xingchang. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau [J]. Acta Ecol Sin, 2010, 30(5): 1217 − 1226. |
[2] |
王朔林, 杨艳菊, 王改兰, 等. 长期施肥对栗褐土有机碳矿化的影响[J]. 植物营养与肥料学报, 2016, 22(5): 1278 − 1285.
WANG Shuolin, YANG Yanju, WANG Gailan, et al. Effects of long-term fertilization on organic carbon mineralization of cinnamon soil [J]. J Plant Nutr Fert, 2016, 22(5): 1278 − 1285. |
[3] |
徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491 − 1503.
XU Guangping, LI Yanqiong, SHEN Yuyi, et al. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian Karst Wetland in Guilin [J]. Environ Sci, 2019, 40(3): 1491 − 1503. |
[4] |
GARCIA C, HERNANDEZ T. Organic matter in bare soils of the mediterranean region with a semiarid climate [J]. Arid Soil Res Manage, 1996, 10(1): 31 − 41. |
[5] |
GALANTINI J A, ROSELL R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils [J]. Soil Tillage Res, 2006, 87(1): 72 − 79. |
[6] |
CAYUELA M L, SINICCO T, MONDINI C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil [J]. Appl Soil Ecol, 2009, 41(1): 118 − 127. |
[7] |
FANG Changming, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature, 2005, 433(7021): 57 − 59. |
[8] |
XU Gang, LÜ Yingchun, SUN Junna, et al. Recent advances in biochar applications in agricultural soils: benefits and environmental implications [J]. Clean-Soil Air Water, 2012, 40(10): 1093 − 1098. |
[9] |
SPOKAS K, BAKER J M, REICOSKY D C. Ethylene: potential key for biochar amendment impacts [J]. Plant Soil, 2010, 333(1/2): 443 − 452. |
[10] |
HITZL M, CORMA A, POMARES F, et al. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass [J]. Catal Today, 2015, 257: 154 − 159. |
[11] |
SONG Chengfang, YUAN Wenqiao, SHAN Shengdao, et al. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure[J]. Chemosphere, 2019, 243: 125331. doi: 10.1016/j.chemosphere.2019.125331. |
[12] |
SONG Chengfang, SHAN Shengdao, YANG Chao, et al. The comparison of dissolved organic matter in hydrochars and biochars from pig manure[J]. Sci Total Environ, 2020, 720(15). doi: 10.1016/j.scitotenv.2020.137423. |
[13] |
MAU V, ARYE G, GROSS A. Poultry litter hydrochar as an amendment for sandy soils[J]. J Environ Manage, 2020, 271. doi: 10.1016/j. jenvman. 2020.110959. |
[14] |
CHU Qingnan, XUE Lihong, SINGH B P, et al. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization[J]. Chemosphere, 2020, 245: 125558. doi: 10.1016/j.chemosphere.2019.125558. |
[15] |
BENTO L, CASTRO J, MOREIRA A B, et al. Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse [J]. Geoderma, 2019, 334: 24 − 32. |
[16] |
BREULMANN M, van AFFERDEN M, MUELLER R A, et al. Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration [J]. J Anal Appl Pyrolysis, 2017, 124: 256 − 265. |
[17] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[18] |
KIMETU J M, LEHMANN J, KINYANGI J M, et al. Soil organic C stabilization and thresholds in C saturation [J]. Soil Biol Biochem, 2009, 41(10): 2100 − 2104. |
[19] |
KHALIL M I, HOSSAIN M B, SCHMIDHALTER U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials [J]. Soil Biol Biochem, 2005, 37(8): 1507 − 1518. |
[20] |
SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: some important material properties to distinguish biochars [J]. J Environ Qual, 2012, 41(4): 1001 − 1013. |
[21] |
陈吉, 赵炳梓, 张佳宝, 等. 长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究[J]. 土壤, 2009, 41(5): 719 − 725.
CHEN Ji, ZHAO Bingzi, ZHANG Jiabao, et al. Research on process of fluvo-aquic soil organic carbon mineralization in initial stage of maize growth under long-term different fertilization [J]. Soils, 2009, 41(5): 719 − 725. |
[22] |
ZHANG Zhikun, ZHU Zhongyuan, SHEN Boxiong, et al. Insights into biochar and hydrochar production and applications: a review [J]. Energy, 2019, 171: 581 − 598. |
[23] |
韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响[J]. 生态学报, 2016, 36(18): 5838 − 5846.
HAN Wei, SHEN Shuanghe, XIE Zubin, et al. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil [J]. Acta Ecol Sin, 2016, 36(18): 5838 − 5846. |
[24] |
SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration [J]. Soil Biol Biochem, 2010, 42(12): 2345 − 2347. |
[25] |
BARGMANN I, MARTENS R, RILLIG M C, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen [J]. J Plant Nutr Soil Sci, 2014, 177(1): 59 − 67. |
[26] |
MCGAUGHY K, REZA M T. Recovery of macro and micro-nutrients by hydrothermal carbonization of septage [J]. J Agric Food Chem, 2018, 66(8): 1854 − 1862. |
[27] |
YU Shan, FENG Yanfang, XUE Lihong, et al. Biowaste to treasure: application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids [J]. J Clean Prod, 2019, 240: 1 − 12. |
[28] |
MELO T M, BOTTLINGER M, SCHULZ E, et al. Plant and soil responses to hydrothermally converted sewage sludge (sewchar) [J]. Chemosphere, 2018, 206: 338 − 348. |
[29] |
SUBEDI R, KAMMANN C, PELISSETTI S, et al. Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? [J]. Eur J Soil Sci, 2015, 66(6): 1044 − 1053. |
[30] |
PRATIWI E P A, HILLARY A K, FUKUDA T, et al. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil [J]. Geoderma, 2016, 277: 61 − 68. |
[31] |
DAI Lichun, TAN Furong, WU Bo, et al. Immobilization of phosphorus in cow manure during hydrothermal carbonization [J]. J Environ Manage, 2015, 157: 49 − 53. |
[32] |
HANSEN H C B, HANSEN P E, MAGID J. Empirical modelling of the kinetics of phosphate sorption to macropore materials in aggregated subsoils [J]. Eur J Soil Sci, 2010, 50(2): 317 − 327. |
[33] |
FROSSARD E, CONDRON L M, OBERSON A, et al. Processes governing phosphorus availability in temperate soils [J]. J Environ Qual, 2000, 29(1): 15 − 23. |
[34] |
CHRISTEL W, BRUUN S, MAGID J, et al. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment [J]. Bioresour Technol, 2014, 169: 543 − 551. |
[35] |
FEI Yingheng, ZHAO Dan, LIU Ye, et al. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd)[J]. Chemosphere, 2019, 236: 124841. doi: 10.1016/j.chemosphere.2019.124841. |
[36] |
MELO C A, JUNIOR F H S, BISINOTI M C, et al. Transforming sugarcane bagasse and vinasse wastes into hydrochar in the presence of phosphoric acid: an evaluation of nutrient contents and structural properties [J]. Waste Biomass Valorization, 2017, 8(4): 1139 − 1151. |
[37] |
RILLING M C, WAGNER M, SALEM M, et al. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza [J]. Appl Soil Ecol, 2010, 45(3): 238 − 242. |
[38] |
GEORGE C, WAGNER M, KÜCKE M, et al. Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects [J]. Appl Soil Ecol, 2012, 59: 68 − 72. |
[39] |
BUSCH D, STARK A, KAMMANN C I, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis [J]. Ecotoxicol Environ Saf, 2013, 97: 59 − 66. |
[40] |
QIN Peng, WANG Hailong, YANG Xing, et al. Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils [J]. Chemosphere, 2018, 198: 450 − 459. |