[1] FUTAI K. Pine wood nematode, Bursaphelenchus xylophilus [J]. Ann Rev Phytopathol, 2013, 51(1): 61 − 83.
[2] VICENTE C, ESPADA M, VIEIRA P, et al. Pine wilt disease: a threat to european forestry [J]. Eur J Plant Pathol, 2012, 133(1): 89 − 99.
[3] LIOU J Y, SHIH J Y, TZEAN S S. Esteya, a new nematophagous genus from Taiwan, attacking the pinewood nematode (Bursaphelenchus xylophilus) [J]. Mycol Res, 1999, 103(2): 242 − 248.
[4] WANG Ruizhen, DONG Leiming, CHEN Yuequ, et al. Esteya Vermicola, a nematophagous fungus attacking the pine wood nematode, harbors a bacterial endosymbiont affiliated with Gammaproteobacteria [J]. Microbes Environ, 2017, 32(3): 201 − 209.
[5] SCHERLACH K, BUSCH B, LACKNER G, et al. Symbiotic cooperation in the biosynthesis of a phytotoxin [J]. Angewandte Chemie, 2012, 51(38): 9615 − 9618.
[6] HOFFMAN M T, GUNATILAKA M K, WIJERATNE K, et al. Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte[J/OL]. PLoS One, 2013, 8(9): e73132[2021-11-23]. doi: 10.1371/journal.pone.0073132.
[7] ROOSSINCK M J. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles[J/OL]. Front Microbiol, 2015, 5[2021-11-23]. doi: 10.3389/fmicb.2014.00767.
[8] SALVIOLI A, GHIGNONE S, NOVERO M, et al. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential [J]. ISME J, 2016, 10(1): 130 − 144.
[9] LUMINI E, BIANCIOTTO V, JARGEAT P, et al. Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria [J]. Cell Microbiol, 2007, 9(7): 1716 − 1729.
[10] SALVIOLI A, CHIAPELLO M, FONTAINE J, et al. Endobacteria affect the metabolic profile of their host Gigaspora margarita, an arbuscular mycorrhizal fungus [J]. Environ Microbiol, 2010, 12(8): 2083 − 2095.
[11] FIEHN O, KOPKA J, DÖRMANN P, et al. Metabolite profiling for plant functional genomics [J]. Nat Biotechnol, 2000, 18(11): 1157 − 1161.
[12] NICHOLSON J K, LINDON J C, HOLMES E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data [J]. Xenobiotica, 1999, 29(11): 1181 − 1189.
[13] D’ARI L, BARKER H A. p-Cresol formation by cell-free extracts of Clostridium difficile [J]. Arch Microbiol, 1985, 143(3): 311 − 312.
[14] GRYP T, VANHOLDER R, VANEECHOUTTE M, et al. p-Cresyl sulfate [J/OL]. Toxins, 2017, 9(2): 52[2021-12-01]. doi: 10.3390/toxins9020052.
[15] BOSSERT I D, YOUNG L Y. Anaerobic oxidation of p-cresol by a denitrifying bacterium [J]. Appl Environ Microbiol, 1986, 52(5): 1117 − 1122.
[16] JONES K H, TRUDGILL P W, HOPPER D J. Metabolism of p-cresol by the fungus Aspergillus fumigatus [J]. Appl Environ Microbiol, 1993, 59(4): 1125 − 1130.
[17] POWLOWSKI J B, DAGLEY S. β-Ketoadipate pathway in Trichosporon cutaneum modified for methyl-substituted metabolites [J]. J Bacteriol, 1985, 163(3): 1126 − 1135.
[18] LEE J H, LEE J. Indole as an intercellular signal in microbial communities [J]. FEMS Microbiol Rev, 2010, 34(4): 426 − 444.
[19] HIRAKAWA H, KODAMA T, TAKUMI-KOBAYASHI A, et al. Secreted indole serves as a signal for expression of type III secretion system translocators in enterohaemorrhagic Escherichia coli O157: H7 [J]. Microbiology, 2009, 155(2): 541 − 550.
[20] WANG Ruizhen, DONG Leiming, RAN Qinghua, et al. Comparative genomic analyses reveal the features for adaptation to nematodes in fungi [J]. DNA Res, 2018, 25(3): 245 − 256.
[21] LARSEN P E, SREEDASYAM A, TRIVEDI G, et al. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome[J/OL]. BMC Syst Biol, 2011, 5(1): 70[2021-11-23]. doi: 10.1186/1752-0509-5-70.
[22] RINEAU F, SHAH F, SMITS M M, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus [J]. ISME J, 2013, 7(10): 2010 − 2022.
[23] CAMPBELL L L. The mechanism of allantoin degradation by a Pseudomonas [J]. J Bacteriol, 1954, 68(5): 598 − 603.
[24] TRIJBELS F, VOGELS G D. Degradation of allantoin by Pseudomonas acidovorans [J]. Biochim Biophys Acta, 1966, 113(2): 292 − 301.
[25] ARGÜELLES J C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis [J]. Arch Microbiol, 2000, 174(4): 217 − 224.
[26] SALMINEN S O, STREETER J G. Enzymes of \begin{document}$ \alpha $\end{document}, \begin{document}$ \alpha $\end{document}-trehalose metabolism in soybean nodules [J]. Plant Physiol, 1986, 81(2): 538 − 541.
[27] FOSTER J W, YANAGITA T. A bacterial riboflavin hydrolase [J]. J Biol Chem, 1956, 221(2): 593 − 607.
[28] RAJAMANI S, BAUER W D, ROBINSON J B, et al. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor [J]. Mol Plant-Microb Interactions, 2008, 21(9): 1184 − 1192.
[29] DAKORA F D. Lumichrome: A Bacterial Signal Molecule Influencing Plant Growth, in: Biological Nitrogen Fixation[M]. Hoboken: John Wiley & Sons, Inc, 2015: 389 − 396.
[30] KANU S A, DAKORA F D. Effect of N and P nutrition on extracellular secretion of lumichrome, riboflavin and indole acetic acid by N2-fixing bacteria and endophytes isolated from Psoralea nodules [J]. Symbiosis, 2012, 57(1): 15 − 22.
[31] PHILLIPS D A, JOSEPH C M, YANG G P, et al. Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth [J]. Proc Natl Acad Sci U S A, 1999, 96(22): 12275 − 12280.