[1] 吴锦秋, 白海坤, 王楚, 等. 不同砧穗组合对杏果实大小及品质的影响[J]. 西北农林科技大学学报(自然科学版), 2025, 53(9): 93−103.

WU Jinqiu, BAI Haikun, WANG Chu, et al. Effects of different rootstock-scion combinations on fruit size and quality of apricot[J]. Journal of Northwest A&F University (Natural Science Edition), 2025, 53(9): 93−103. DOI:10.13207/j.cnki.jnwafu.2025.09.010.
[2] GUARDIOLA J L, GARCÍA-LUIS A. Increasing fruit size in Citrus. Thinning and stimulation of fruit growth[J]. Plant Growth Regulation, 2000, 31(1): 121−132. DOI: 10.1023/A:1006339721880.
[3] YILMAZ B, CIMEN B, INCESU M, et al. Influence of girdling on the seasonal leaf nutrition status and fruit size of Robinson mandarin (Citrus reticulata Blanco)[J]. Applied Ecology and Environmental Research, 2018, 16(5): 6205−6218. DOI: 10.15666/aeer/1605_62056218.
[4] LIU Cong, LI Dexiong, HUANG Xianbiao, et al. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. Journal of Integrative Agriculture, 2022, 21(3): 725−735. DOI: 10.1016/S2095-3119(20)63502-X.
[5] FERRER C, MARTIZ J, SAA S, et al. Increase in final fruit size of tangor (Citrus reticulata × C. sinensis) cv W. Murcott by application of benzyladenine to flowers[J]. Scientia Horticulturae, 2017, 223: 38−43. DOI: 10.1016/j.scienta.2017.05.030.
[6] de JONG M, WOLTERS-ARTS M, SCHIMMEL B C J, et al. Solanum lycopersicum auxin response factor 9 regulates cell division activity during early tomato fruit development[J]. Journal of Experimental Botany, 2015, 66(11): 3405−3416. DOI: 10.1093/jxb/erv152.
[7] BEAUCHET A, GÉVAUDANT F, GONZALEZ N, et al. In search of the still unknown function of FW2.2/CELL NUMBER REGULATOR, a major regulator of fruit size in tomato[J]. Journal of Experimental Botany, 2021, 72(15): 5300−5311. DOI: 10.1093/jxb/erab207.
[8] ZHAO Xuan, MUHAMMAD N, ZHAO Zixuan, et al. Molecular regulation of fruit size in horticultural plants: a review[J]. Scientia Horticulturae, 2021, 288: 110353. DOI: 10.1016/j.scienta.2021.110353.
[9] DONG Yuanxin, QI Xiliang, LIU Congli, et al. A sweet cherry AGAMOUS-LIKE transcription factor PavAGL15 affects fruit size by directly repressing the PavCYP78A9 expression[J]. Scientia Horticulturae, 2022, 297: 110947. DOI: 10.1016/j.scienta.2022.110947.
[10] KARIM S K A, ALLAN A C, SCHAFFER R J, et al. Cell division controls final fruit size in three apple (Malus × domestica) cultivars[J]. Horticulturae, 2022, 8(7): 657. DOI: 10.3390/horticulturae8070657.
[11] FRARY A, NESBITT T C, GRANDILLO S, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85−88. DOI: 10.1126/science.289.5476.85.
[12] van DER KNAAP E, TANKSLEY S D. The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato[J]. Theoretical and Applied Genetics, 2003, 107(1): 139−147. DOI: 10.1007/s00122-003-1224-1.
[13] LIBAULT M, STACEY G. Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes[J]. Plant Signaling & Behavior, 2010, 5(10): 1226−1228. DOI: 10.4161/psb.5.10.12808.
[14] TIAN Jia, ZENG Bin, LUO Shuping, et al. Cloning, localization and expression analysis of two fw2.2-like genes in small- and large-fruited pear species[J]. Journal of Integrative Agriculture, 2016, 15(2): 282−294. DOI: 10.1016/S2095-3119(15)61075-9.
[15] 蒲小秋. 梨fw2.2-like基因家族的鉴定、表达及相关基因的功能验证[D]. 乌鲁木齐: 新疆农业大学, 2023.

PU Xiaoqiu. Identification and Expression of Pear fw2.2-Like Gene Family and Functional Verification of Related Genes[D]. Urumqi: Xinjiang Agricultural University, 2023.
[16] DAHAN Y, ROSENFELD R, ZADIRANOV V, et al. A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division[J]. Planta, 2010, 232(3): 663−676. DOI: 10.1007/s00425-010-1200-3.
[17] de FRANCESCHI P, STEGMEIR T, CABRERA A, et al. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry[J]. Molecular Breeding, 2013, 32(2): 311−326. DOI: 10.1007/s11032-013-9872-6.
[18] SU Wenbing, ZHANG Ling, JIANG Yuanyuan, et al. EjFWLs are repressors of cell division during early fruit morphogenesis of loquat[J]. Scientia Horticulturae, 2021, 287: 110261. DOI: 10.1016/j.scienta.2021.110261.
[19] YU Yuan, CHEN Chunxian, GMITTER F G. QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers[J]. Tree Genetics & Genomes, 2016, 12(4): 77. DOI: 10.1007/s11295-016-1034-7.
[20] IMAI A, YOSHIOKA T, HAYASHI T. Quantitative trait locus (QTL) analysis of fruit-quality traits for mandarin breeding in Japan[J]. Tree Genetics & Genomes, 2017, 13(4): 79. DOI: 10.1007/s11295-017-1162-8.
[21] 罗艾, 龚桂芝, 彭祝春, 等. 柑橘果实大小与质量的遗传分析和数量性状位点定位[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 719−728.

LUO Ai, GONG Guizhi, PENG Zhuchun, et al. Genetic analysis and quantitative trait loci mapping of Citrus fruit size and quality[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2021, 47(6): 719−728. DOI: 10.3785/j.issn.1008-9209.2021.04.121.
[22] HAMADA K, HASEGAWA K, KITAJIMA A, et al. The relationship between fruit size and cell division and enlargement in cultivated and wild persimmons[J]. The Journal of Horticultural Science and Biotechnology, 2008, 83(2): 218−222. DOI: 10.1080/14620316.2008.11512372.
[23] NESBITT T C, TANKSLEY S D. Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes[J]. Genetics, 2002, 162(1): 365−379. DOI: 10.1093/genetics/162.1.365.
[24] GUO Mei, RUPE M A, DIETER J A, et al. Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis[J]. The Plant Cell, 2010, 22(4): 1057−1073. DOI: 10.1105/tpc.109.073676.
[25] XU Jun, XIONG Wentao, CAO Baobao, et al. Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice[J]. Planta, 2013, 238(4): 643−655. DOI: 10.1007/s00425-013-1916-y.
[26] PU Xiaoqiu, TIAN Jia, LI Jiang, et al. Genome-wide identification and expression analysis of the fw2.2-like gene family in pear[J]. Horticulturae, 2023, 9(4): 429. DOI: 10.3390/horticulturae9040429.
[27] NESBITT T C, TANKSLEY S D. fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution[J]. Plant Physiology, 2001, 127(2): 575−583. DOI: 10.1104/pp.010087.
[28] LIU Jiping, CONG Bin, TANKSLEY S D. Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size[J]. Plant Physiology, 2003, 132(1): 292−299. DOI: 10.1104/pp.102.018143.
[29] ZHANG M W, ZHANG T K, YUAN Z H. Pomegranate PLAC8 family[J]. Acta Horticulturae, 2019, 1254: 35−40. DOI: 10.17660/actahortic.2019.1254.6.
[30] LI Meiyu, MAO Liyun, SONG Shuang, et al. Functional insights into the FW2.2-like gene family in Chinese jujube: identification, characterization, and impact of ZjFWL10 variants on fruit size and plant height[J]. Journal of Integrative Agriculture, 2025, 24(10): 3880−3894. DOI: 10.1016/j.jia.2025.02.017.
[31] ARNOYS E J, WANG J L. Dual localization: proteins in extracellular and intracellular compartments[J]. Acta Histochemica, 2007, 109(2): 89−110. DOI: 10.1016/j.acthis.2006.10.002.
[32] BEAUCHET A, BOLLIER N, GRISON M, et al. The cell number regulator FW2.2 protein regulates cell-to-cell communication in tomato by modulating callose deposition at plasmodesmata[J]. Plant Physiology, 2024, 196(2): 883−901. DOI: 10.1093/plphys/kiae198.
[33] CONG Bin, LIU Jiping, TANKSLEY S D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13606−13611. DOI: 10.1073/pnas.172520999.