[1] MURATA N, TASAKA Y. Glycerol-3-phosphate acyltransferase in plants [J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1997, 1348(1/2): 10 − 16.
[2] CHEN Xue, SNYDER C L, TRUKSA M, et al. Sn-glycerol-3-phosphate acyltransferases in plants [J]. Plant Signaling &Behavior, 2011, 6(11): 1695 − 1699.
[3] 韩妮莎, 丁硕, 郑月萍, 等. 植物甘油脂合成途径第一步酰化反应的研究进展[J]. 中国油料作物学报, 2022, 44(4): 699 − 711.

HAN Nisha, DING Shuo, ZHENG Yueping, et al. Advance in studies on the initial step of the glycerolipid biosynthetic pathway in plants [J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4): 699 − 711.
[4] GAN Yi, SONG Yu, CHEN Yadong, et al. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr [J/OL]. BMC Plant Biology, 2018, 18(1): 303[2022-11-10]. doi:10.1186/s12870-018-1525-9.
[5] ZHENG Zhifu, XIA Qun, DAUK M, et al. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility [J]. The Plant Cell, 2003, 15(8): 1872 − 1887.
[6] KUNST L, BROWSE J, SOMERVILLE C. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity [J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(12): 4143 − 4147.
[7] OHLROGGE J, BROWSE J. Lipid biosynthesis [J]. The Plant Cell, 1995, 7(7): 957 − 970.
[8] NISHIDA I, TASAKA Y, SHIRAISHI H, et al. The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana [J]. Plant Molecular Biology, 1993, 21(2): 267 − 277.
[9] XU Changcheng, YU Bin, CORNISH A J, et al. Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase [J]. The Plant Journal, 2006, 47(2): 296 − 309.
[10] KIM H U, HUANG A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis [J]. Plant Physiology, 2004, 134(3): 1206 − 1216.
[11] 陈娜, 郭尚敬, 颜坤, 等. 甜椒甘油-3-磷酸酰基转移酶基因的克隆与表达分析[J]. 园艺学报, 2005, 32(5): 58 − 62.

CHEN Na, GUO Shangjing, YAN Kun, et al. Cloning and expression analysis of glycerol-3-phosphate acyltransferase gene from sweet pepper [J]. Acta Horticulturae Sinica, 2005, 32(5): 58 − 62.
[12] FRITZ M, HEINZ E, WOLTER F P. Cloning and sequencing of a full-length cDNA coding for sn-glycerol-3-phosphate acyltransferase from Phaseolus vulgaris [J]. Plant Physiology, 1995, 107(3): 1039 − 1040.
[13] WEBER S, WOLTER F P, BUCK F, et al. Purification and cDNA sequencing of an oleate-selective acyl-ACP: sn-glycerol-3-phosphate acyltransferase from pea chloroplasts [J]. Plant Molecular Biology, 1991, 17(5): 1067 − 1076.
[14] NISHIDA I, SUGIURA M, ENJU A, et al. A second gene for acyl-(acyl-carrier-protein): glycerol-3-phosphate acyltransferase in squash, Cucurbita moschata cv. Shirogikuza(*), codes for an oleate-selective isozyme: molecular cloning and protein purification studies [J]. Plant Cell Physiology, 2000, 41(12): 1381 − 1391.
[15] BHELLA R S, MACKENZIE S L. Nucleotide sequence of a cDNA from Carthamus tinctorius encoding a glycerol-3-phosphate acyl transferase [J]. Plant Physiology, 1994, 106(4): 1713 − 1714.
[16] PAYA-MILANS M, VENEGAS-CALERON M, SALAS J J, et al. Cloning, heterologous expression and biochemical characterization of plastidial sn-glycerol-3-phosphate acyltransferase from Helianthus annuus [J]. Phytochemistry, 2015, 111: 27 − 36.
[17] KANG Huiling, JIA Chenxi, LIU Ni’an, et al. Plastid glycerol-3-phosphate acyltransferase enhanced plant growth and prokaryotic glycerolipid synthesis in Brassica napus [J/OL]. International Journal of Molecular Sciences, 2020, 21(15): 5325[2022-11-20]. doi:10.3390/ijms21155325.
[18] YAN Kun, CHEN Na, QU Yanyan, et al. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco [J]. Journal of Integrative Plant Biology, 2008, 50(5): 613 − 621.
[19] 李昊根. ATS1异位表达对拟南芥甘油脂合成及磷胁迫响应的影响[D]. 杭州: 浙江农林大学, 2019.

LI Haogen. Effects of Ectopic Expression of ATS1 on Glycerolipid Biosynthesis and Response to Phosphorus Stress in Arabidopsis thaliana [D]. Hangzhou: Zhejiang A&F University, 2019.
[20] BAHIELDIN A, SABIR J S M, RAMADAN A, et al. Control of glycerol biosynthesis under high salt stress in Arabidopsis [J]. Functional Plant Biology, 2013, 41(1): 87 − 95.
[21] KUNST L, BROWSE J, SOMERVILLE C. Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity [J]. Plant Physiology, 1989, 90(3): 846 − 853.
[22] WANG Zhiping, XING Huili, DONG Li, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J/OL]. Genome Biology, 2015, 16: 144[2022-11-10]. doi:10.1186/s13059-015-0715-0.
[23] 朱丽颖, 郑月萍, 徐雪珍, 等. 一种准确、简便测定CRISPR/Cas9基因编辑效率的方法[J]. 江苏农业学报, 2020, 36(2): 299 − 305.

ZHU Liying, ZHENG Yueping, XU Xuezhen, et al. A convenient and accurate method for determining the efficiency of CRISPR/Cas9-based gene editing [J]. Jiangsu Academy of Agricultural Sciences, 2020, 36(2): 299 − 305.
[24] 李丹丹, 林蓉, 李新国, 等. AtJAR1 基因在拟南芥耐盐性中的功能分析[J]. 浙江农林大学学报, 2022, 39(5): 998 − 1009.

LI Dandan, LIN Rong, LI Xinguo, et al. Functional analysis of AtJAR1 gene in salt tolerance of Arabidopsis thaliana [J]. Journal of Zhejiang A&F University, 2022, 39(5): 998 − 1009.
[25] 徐雪珍, 郑月萍, 张夏婷, 等. 拟南芥AtFAD6 基因突变体的构建[J]. 江苏农业学报, 2021, 37(5): 1125 − 1130.

XU Xuezhen, ZHENG Yueping, ZHANG Xiating, et al. Construction of Arabidopsis AtFAD6 gene mutant [J]. Jiangsu Academy of Agricultural Sciences, 2021, 37(5): 1125 − 1130.