[1] BIRKHOLD K T, KOCH K E, DARNELL R L. Carbon and nitrogen economy of developing rabbiteye blueberry fruit [J]. J Am Soc Hortic Sci, 1992, 117: 139 − 145.
[2] KOZLOWSKI T T. Carbohydrate sources and sinks in woody plants Ⅱ carbohydrate sources and sinks in woody plants [J]. Botl Rev, 1992, 58(2): 107 − 222.
[3] NILSEN E T. 10-stem photosynthesis: extent, patterns, and role in plant carbon economy[M]// GARTNER B L. Plant Stems. [s.l.]: Academic Press, 1995: 223 − 240.
[4] MANETAS Y. Photosynthesizing in the rain: beneficial effects of twig wetting on corticular photosynthesis through changes in the periderm optical properties [J]. Flora, 2004, 199(4): 334 − 341.
[5] SUN Q, YODA K, SUZUKI M, et al. Vascular tissue in the stem and roots of woody plants can conduct light [J]. J Exp Bot, 2005, 54(387): 1627 − 1635.
[6] HIBBERD J M, QUICK W P. Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants [J]. Nature, 2002, 415(6870): 451 − 454.
[7] 占东霞, 张超, 张亚黎, 等. 膜下滴灌水分亏缺下棉花开花后非叶绿色器官光合特性及其对产量的贡献[J]. 作物学报, 2015, 41(12): 1880 − 1887.

ZHAN Dongxia, ZHANG Chao, ZHANG Yali, et al. Photosynthetic characteristics after flowering and contribution of non-leaf green organs of cotton to yield under mulching-drip irrigation with water deficiency [J]. Acta Agron Sin, 2015, 41(12): 1880 − 1887.
[8] 胡锋, 黄俊丽, 秦峰, 等. 植物叶绿体类囊体膜及膜蛋白研究进展[J]. 生命科学, 2011, 23(3): 291 − 298.

HU Feng, HUANG Junli, QIN Feng, et al. Progress in chloroplast thylakoid membrane and membrane proteins [J]. Chin Bull Life Sci, 2011, 23(3): 291 − 298.
[9] WOLLMAN F A, MINAI L, NECHUSHTAI R. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes [J]. Biochim Biophysic Acta, 1999, 1411(1): 21 − 85.
[10] SHEWRY P R. Biochemistry & molecular biology plants[M]//BUCHANAN B B, GRUISSEM W, JONES R L. Biochemistry & Molecular Biology Plants. [s.l.]: Springer Nature, 2001: 105 − 106.
[11] FRISO G, GIACOMELLI L, YTTERBERG A J, et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database [J]. Plant Cell, 2004, 16(2): 478 − 499.
[12] 高荣孚, 郑彩霞, 童年, 等. 高等植物光系统Ⅰ的研究(Ⅰ):叶绿体中存在2种光系统Ⅰ[J]. 北京林业大学学报, 1997, 19(1): 13 − 20.

GAO Rongfu, ZHANG Caixia, TONG Nian, et al. Photosystem Ⅰ of higher plants(Ⅰ): two populations of PSⅠ in Chloroplasts [J]. J Beijing For Univ, 1997, 19(1): 13 − 20.
[13] 蔡霞, 王水才, 贺俊芳, 等. 83 K光系统Ⅱ核心复合物不同激发的荧光光谱学[J]. 光子学报, 2007, 36(6): 1128 − 1132.

CAI Xia, WANG Shuicai, HE Junfang, et al. Fluorescence spectroscopy of photosystem Ⅱ core complex with different excitation wavelengths at 83 K [J]. Acta Photonica Sin, 2007, 36(6): 1128 − 1132.
[14] 周伟, 何林文, 陆勤勤, 等. 条斑紫菜类囊体膜蛋白质组双向电泳研究方法[J]. 海洋科学, 2014, 38(3): 63 − 68.

ZHOU Wei, HE Linwen, LU Qinqin, et al. Two-dimensional electrophoresis of thylakoid membrane proteome in Porphyra yezoensis [J]. Marine Sci, 2014, 38(3): 63 − 68.
[15] 姚洪军, 张汝民, 石玉杰, 等. 豌豆光系统Ⅰ多肽HPCE分离特性的研究[J]. 内蒙古农业大学学报, 2006, 27(1): 38 − 42.

YAO Hongjun, ZHANG Rumin, SHI Yujie, et al. Isolation of photosystem Ⅰ protein complex and HPCE analysis of their polypeptides [J]. J Inner Mong Agric Univ, 2006, 27(1): 38 − 42.
[16] 温星, 程路芸, 李丹丹, 等. 毛竹叶片发育过程中光合生理特性的变化特征[J]. 浙江农林大学学报, 2017, 34(3): 437 − 442.

WEN Xing, CHENG Luyun, LI Dandan, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(3): 437 − 442.
[17] 王星星, 刘琳, 张洁, 等. 毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J]. 植物生态学报, 2012, 36(5): 456 − 462.

WANG Xingxing, LIU Lin, ZHANG Jie, et al. Photosynthetic characteristics in the development process of Phyllostachys edulis [J]. Chin J Plant Ecol, 2012, 36(5): 456 − 462.
[18] 孙建飞, 翟建云, 马元丹, 等. 毛竹快速生长期茎秆不同节间光合色素和光合酶活性的差异[J]. 植物学报, 2018, 53(6): 773 − 781.

SUN Jianfei, ZHAI Jianyun, MA Yuandan, et al. Differences in photosynthetic pigments and photosynthetic enzyme activities in different internodes of Phyllostachys edulis during rapid growth stage [J]. Chin Bull Bot, 2018, 53(6): 773 − 781.
[19] 程路芸, 温星, 马丹丹, 等. 毛竹快速生长过程中碳水化合物的时空变化[J]. 浙江农林大学学报, 2017, 34(2): 261 − 267.

CHENG Luyun, WEN Xing, MA Dandan, et al. Spatial and temporal change of carbohydrates during rapid growth processes of Phyllostachys edulis [J]. J Zhejiang A&F Univ, 2017, 34(2): 261 − 267.
[20] 翟建云, 孙建飞, 马元丹, 等. 毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J]. 竹子学报, 2018, 37(1): 42 − 48.

ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in different internodes of Phyllostachys edulis during rapid growth period [J]. J Bamboo Res, 2018, 37(1): 42 − 48.
[21] CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo [J]. J Proteome Res, 2012, 11(4): 2492 − 2507.
[22] PENG Zhenhua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nat Gen, 2013, 45: 456 − 461.
[23] ARNON D I. Copper enzymes in isolated chloroplasts: Polyphenol Beta vulgaris [J]. Plant Physiol, 1959, 24(1): 1 − 15.
[24] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes [J]. Methods Enzymol, 1989, 148(1): 350 − 382.
[25] 陈登举, 高培军, 吴兴波, 等. 毛竹茎秆叶绿体超微结构及其发射荧光光谱特征的研究[J]. 植物学报, 2013, 48(6): 635 − 642.

CHEN Dengju, GAO Peijun, WU Xingbo, et al. Chloroplast ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys edulis [J]. Chin Bull Bot, 2013, 48(6): 635 − 642.
[26] SCHÄGGER H, von JAGOW G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form [J]. Anal Biochem, 1991, 199(2): 223 − 231.
[27] RANTALA M, PAAKKARINEN V, ARO E M. Analysis of thylakoid membrane protein complexes by blue native gel electrophoresis [J]. J Visualized Exp, 2018, 139: 1 − 6.
[28] 杜建芳, 廖祥儒, 叶步青, 等. 光质对油菜幼苗生长及抗氧化酶活性的影响[J]. 植物学报, 2002, 19(6): 743 − 745.

DU Jianfang, LIAO Xiangru, YE Buqing, et al. Effect of light quality on the growth and antioxidant enzyme activities of rape seedings [J]. Chin Bull Bot, 2002, 19(6): 743 − 745.
[29] ALEXANDER G, IVANOV, MARIANNA K, et al. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine [J]. Planta, 2006, 223(6): 1165 − 1177.
[30] CARRARA S, PARDOSSI A, SOLDATINI G F, et al. Photosynthetic activity of ripening tomato fruit [J]. Photosynthetica, 2001, 39(1): 75 − 78.
[31] RANJAN S, SINGH R, SONI D K, et al. Photosynthetic performance of Jatropha curcas fruits [J]. Plant Physiol Biochem, 2012, 52: 66 − 76.
[32] FERRONI L, PANTALEONI L, BALDISSEROTTO C, et al. Low photosynthetic activity is linked to changes in the organization of photosystemⅡ in the fruit of arum italicum [J]. Plant Physiol Biochem, 2013, 63: 140 − 150.
[33] BONORA A, PANCALDI S, GUALANDRI R, et al. Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening [J]. J Exp Bot, 2000, 51(346): 873 − 884.
[34] BARBER J. Photosystem Ⅱ: a multisubunit membrane protein that oxidises water [J]. Curr Opinion Struct Biol, 2002, 12(4): 523 − 530.
[35] FERREIRA K N, IVERSON T M, MAGHLAOUI K. Architecture of the photosynthetic oxygen-evolving center [J]. Sci, 2004, 303(5665): 1831 − 1838.
[36] KUHLBRANDT W, WANG D N. Atomic model of plant light-harvesting complex by electron crystallography [J]. Nature, 1994, 367: 614 − 621.
[37] BARSAN C, ZOUINE M, MAZA E, et al. Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components [J]. Plant Physiol, 2012, 160(2): 708 − 725.
[38] SMART L B, ANDERSON S L, MCINTOSH L. Targeted genetic inactivation of the photosystem Ⅰ reaction center in the Cyanobacterium synechocystis sp. Pcc 6803 [J]. Embo J, 1992, 10(11): 3289 − 3296.
[39] LI Ning, ZHAO Jindong, WARREN P V, et al. PsaD is required for the stable binding of PsaC to the photosystemⅠcore protein of Synechococcus sp. Pcc 6301 [J]. Biochemistry, 1991, 30(31): 7863 − 7872.
[40] GOVINDJEE E. Sixty-three years since kautsky: chlorophyll a fluorescence [J]. Aust J Plant Physiol, 1995, 22(2): 131 − 160.
[41] ANDREEVA A, ABAROVA S, STOITCHKOVA K, et al. Selective photobleaching of chlorophylls and carotenoids in photosystem Ⅰ particles under high-light treatment [J]. Photochem Photobiol, 2007, 83(6): 1301 − 1307.
[42] ANDREEVA A, STOITCHKOVA K, BUSHEVA M, et al. Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content(Ⅰ) changes due to the modified pigment content [J]. J Photochem Photobio B-Biol, 2003, 70(3): 153 − 162.
[43] JENNINGS R C, ZUCCHELLI G, CROCE R, et al. The photochemical trapping rate from red spectral states in PSI-LHCI is determined by thermal activation of energy transfer to bulk chlorophylls [J]. Biochim Biophysic Acta, 2003, 1557(1/3): 91 − 98.
[44] BERTAMINI M, MUTHUCHELIAN K, NEDUNCHEZHIAN N. Shade effect alters leaf pigments and photosynthetic responses in norway spruce (Picea abies) grown under field conditions [J]. Photosynthetica, 2006, 44(2): 227 − 234.
[45] 蔡霞, 王水才, 贺俊芳, 等. 温度对PSⅡ CP47/D1/D2/Cyt b559复合物荧光光谱特性的影响[J]. 光子学报, 2003, 32(7): 853 − 855.

CAI Xia, WANG Shuicai, HE Junfang, et al. Effect of temperature on the fluorescence spectrum characteristics of the PSⅡ reaction center CP47/D1/D2/Cyt b559 complex [J]. Acta Photonica Sin, 2003, 32(7): 853 − 855.