[1] |
IPCC. An IPCC Special Report on the Impacts of Global Warming of 1.5 above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty [M]. Cambridge: Cambridge University Press, 2018: 616. |
[2] |
PINGOUD K, EKHOLM T, SOIMAKALLIO S, et al. Carbon balance indicator for forest bioenergy scenarios [J]. GCB Bioenergy, 2016, 8(1): 171 − 182. |
[3] |
HU Yanqiu, SU Zhiyao, LI Wenbin, et al. Influence of tree species composition and community structure on carbon density in a subtropical forest [J/OL]. PLoS One, 2015, 10(8): e0136984[2023-03-10]. doi: 10.1371/journal.pone.0136984. |
[4] |
LAFLOWER D M, HURTEAU M D, KOCH G W, et al. Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA [J]. Forest Ecology and Management, 2016, 362: 194 − 204. |
[5] |
余文梦, 张婷婷, 苏时鹏, 等. 劳动力转移和森林管护水平对森林碳密度的影响——基于福建253个村的实证研究[J]. 生态学报, 2022, 42(23): 9820 − 9829.
YU Wenmeng, ZHANG Tingting, SU Shipeng, et al. Effects of labor transfer and forest management on forest carbon density based on an empirical study of 253 villages in Fujian Province [J]. Acta Ecologica Sinica, 2022, 42(23): 9820 − 9829. |
[6] |
林玉英, 李宝银, 邱荣祖, 等. 基于GWR模型的道路网络对森林碳密度干扰的地理变异——以闽江上游地区为例[J]. 地理科学, 2022, 42(6): 1113 − 1123.
LIN Yuying, LI Baoyin, QIU Rongzu, et al. Geographic variation of road network effects on forest carbon density based on GWR model: a case study of the upstream district of the Minjiang River [J]. Scientia Geographica Sinica, 2022, 42(6): 1113 − 1123. |
[7] |
REN Yin, YAN Jing, WEI Xiaohua, et al. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data [J]. Journal of Environmental Management, 2012, 113: 447 − 455. |
[8] |
张秋菊, 傅伯杰, 陈利顶. 关于景观格局演变研究的几个问题[J]. 地理科学, 2003, 23(3): 264 − 270.
ZHANG Qiuju, FU Bojie, CHEN Liding. Several problems about landscape pattern change research [J]. Scientia Geographica Sinica, 2003, 23(3): 264 − 270. |
[9] |
王美玲, 张继超, 王舶鉴, 等. 长白山区森林景观格局动态[J]. 生态学杂志, 2017, 36(11): 3138 − 3147.
WANG Meiling, ZHANG Jichao, WANG Bojian, et al. Dynamics of forest landscape pattern in Changbai Mountain [J]. Chinese Journal of Ecology, 2017, 36(11): 3138 − 3147. |
[10] |
WALZ U. Monitoring of landscape change and functions in Saxony (eastern Germany): methods and indicators [J]. Ecological Indicators, 2008, 8(6): 807 − 817. |
[11] |
LIANG Liang, SCHWARTZ M D. Landscape phenology: an integrative approach to seasonal vegetation dynamics [J]. Landscape Ecology, 2009, 24(4): 465 − 472. |
[12] |
PIRES C A, RIBEIRO M F, VILLA P M, et al. Multiple drivers influence tree species diversity and above-ground carbon stock in second-growth Atlantic forests: implications for passive restoration [J/OL]. Journal of Environmental Management, 2022, 318: 115588[2023-03-12]. doi:10.1016/j.jenvman.2022.115588. |
[13] |
陈雅如. 三峡库区森林生产力与碳储量对景观格局变化的响应[D]. 北京: 中国林业科学研究院, 2017.
CHEN Yaru. The Response of Forest Productivity and Carbon Storage to Landscape Pattern Change in Three Gorges Reservoir Area [D]. Beijing: Chinese Academy of Forestry, 2017. |
[14] |
MATOS F A, MAGNAGO L F, MIRANDA C A, et al. Secondary forest fragments offer important carbon and biodiversity co-benefits [J]. Global Change Biology, 2020, 26(2): 509 − 522. |
[15] |
CHAPLIN K R, RAMLER I, SHARP R, et al. Degradation in carbon stocks near tropical forest edges [J/OL]. Nature Communications, 2015, 6: 10158[2023-03-12]. doi:10.1038/ncomms10158. |
[16] |
张丹. 城市化背景下城市森林结构与碳储量时空变化研究——以长春市为例[D]. 北京: 中国科学院大学, 2015.
ZHANG Dan. Spatial-temporal Changes of Urban Forest Structure and Carbon Storage under Rapid Urbanization: a Case Study in Changchun [D]. Beijing: University of Chinese Academy of Sciences, 2015. |
[17] |
宋洁. 祁连山森林碳储量与森林景观格局时空变化研究[D]. 兰州: 甘肃农业大学, 2021.
SONG Jie. Research on Temporal and Spatial Changes of Forest Carbon Storage and Forest Landscape Pattern in Qilian Mountains [D]. Lanzhou: Gansu Agricultural University, 2021. |
[18] |
吕海亮. 城市植被与土壤碳储量时空变化规律研究——以哈尔滨市为例[D]. 北京: 中国科学院大学, 2017.
LÜ Hailiang. Spatial and Temporal Variations of Urban Vegetation and Soil Carbon Storage: a Case Study in Harbin [D]. Beijing: University of Chinese Academy of Sciences, 2017. |
[19] |
唐亦武, 佘济云, 胡彪, 等. 海口市林分碳密度与景观格局指数耦合研究[J]. 西北林学院学报, 2020, 35(6): 168 − 175.
TANG Yiwu, SHE Jiyun, HU Biao, et al. Coupling of forest carbon density and landscape pattern index in Haikou [J]. Journal of Northwest Forestry University, 2020, 35(6): 168 − 175. |
[20] |
杜群, 徐军, 王剑武, 等. 浙江省森林碳分布与地形的相关性[J]. 浙江农林大学学报, 2013, 30(3): 330 − 335.
DU Qun, XU Jun, WANG Jianwu, et al. Correlation between forest carbon distribution and terrain elements of altitude and slope [J]. Journal of Zhejiang A&F University, 2013, 30(3): 330 − 335. |
[21] |
ZHU Chenghao, WANG Zhengyi, JI Biyong, et al. Measurement and spatial econometric analysis of forest carbon sequestration efficiency in Zhejiang Province, China [J/OL]. Forests, 2022, 13(10): 1583[2023-03-12]. doi:10.3390/f13101583. |
[22] |
FOTHERINGHAM A S, YANG Wenbai, KANG Wei. Multiscale Geographically Weighted Regression (MGWR) [J]. Annals of the American Association of Geographers, 2017, 107(6): 1247 − 1265. |
[23] |
刘永婷, 杨钊, 徐光来, 等. 基于MGWR模型的皖江城市带生境质量对城镇化的响应研究[J]. 地理科学, 2023, 43(2): 280 − 290.
LIU Yongting, YANG Zhao, XU Guanglai, et al. Impacts of urbanization on habitat quality using MGWR models in Wanjiang City belt [J]. Scientia Geographica Sinica, 2023, 43(2): 280 − 290. |
[24] |
马勇, 张瑞. 县域生态效率空间格局及影响因素研究——以长江经济带为例[J]. 中国地质大学学报(社会科学版), 2021, 21(6): 62 − 76.
MA Yong, ZHANG Rui. Spatial pattern and influencing factors of county-scale eco-efficiency: case of the Yangtze River economic belt [J]. Journal of China University of Geosciences (Social Science Edition), 2021, 21(6): 62 − 76. |
[25] |
LI Wenhui, XU Quanli, YI Junhua, et al. Predictive model of spatial scale of forest fire driving factors: a case study of Yunnan Province, China [J/OL]. Scientific Reports, 2022, 12(1): 19029[2023-03-12]. doi:10.1038/s41598-022-23697-6. |
[26] |
ORDWAY E M, ASNER G P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(14): 7863 − 7870. |
[27] |
DIAO Jiaojiao, LIU Jinxun, ZHU Zhiliang, et al. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China [J]. Forest Ecosystems, 2022, 9(1): 33 − 46. |
[28] |
浙江省林业标准化技术委员会. 森林资源规划设计调查规程: DB33/T 640—2017[S]. 杭州: 浙江省市场监督管理局, 2017.
Technical Committee on Forestry of Standardization Administrator of Zhejiang. Code for Forest Management Inventory: DB33/T 640−2017 [S]. Hangzhou: Market Supervision Administration of Zhejiang Province, 2017. |
[29] |
季碧勇, 陶吉兴, 张国江, 等. 高精度保证下的浙江省森林植被生物量评估[J]. 浙江农林大学学报, 2012, 29(3): 328 − 334.
JI Biyong, TAO Jixing, ZHANG Guojiang, et al. Zhejiang Province’ s forest vegetation biomass assessment for guaranteed accuracy [J]. Journal of Zhejiang A&F University, 2012, 29(3): 328 − 334. |
[30] |
张国江, 季碧勇, 王文武, 等. 设区市森林资源市县联动监测体系研究[J]. 浙江农林大学学报, 2011, 28(1): 46 − 51.
ZHANG Guojiang, JI Biyong, WANG Wenwu, et al. City-county synchronized monitoring system of forest resources in the city with districts under its jurisdiction [J]. Journal of Zhejiang A&F University, 2011, 28(1): 46 − 51. |
[31] |
邬建国. 景观生态学: 格局、过程、尺度与等级[M]. 北京: 高等教育出版社, 2007.
WU Jianguo. Landscape Ecology: Pattern, Process, Scale and Hierarchy [M]. Beijing: Higher Education Press, 2007. |
[32] |
TALHELM A F, PREGITZER K S, KUBISKE M E, et al. Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests [J]. Global Change Biology, 2014, 20(8): 2492 − 2504. |
[33] |
GUSTAFSON E J, MIRANDA B R, de BRUIJN A M, et al. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition [J]. Environmental Modelling &Software, 2017, 97: 171 − 183. |
[34] |
LU Chaoqun, SUN Shucun. A review on the distribution patterns of carbon density in terrestrial ecosystems [J]. Acta Phytoecologica Sinica, 2004, 28(5): 692 − 703. |
[35] |
白立敏, 冯兴华, 孙瑞丰, 等. 生境质量对城镇化的时空响应——以长春市为例[J]. 应用生态学报, 2020, 31(4): 1267 − 1277.
BAI Limin, FENG Xinghua, SUN Ruifeng, et al. Spatial and temporal responses of habitat quality to urbanization: a case study of Changchun City, Jilin Province, China [J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1267 − 1277. |
[36] |
王甜, 卢付强, 李祖政. 基于遥感数据的常州市植被景观连通度研究[J]. 森林与环境学报, 2021, 41(2): 188 − 197.
WANG Tian, LU Fuqiang, LI Zuzheng. Study on vegetation landscape connectivity of Changzhou City based on remote sensing data [J]. Journal of Forest and Environment, 2021, 41(2): 188 − 197. |
[37] |
TOBLER W. Computer movie simulating urban growth in the Detroit region [J]. Economic Geography, 1970, 46: 234 − 240. |
[38] |
ZHU Congmou, ZHANG Xiaoling, ZHOU Mengmeng, et al. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China [J/OL]. Ecological Indicators, 2020, 117(2): 106654[2023-03-12]. doi:10.1016/j.ecolind.2020.106654. |
[39] |
沈体雁, 于瀚辰, 周麟, 等. 北京市二手住宅价格影响机制——基于多尺度地理加权回归模型(MGWR)的研究[J]. 经济地理, 2020, 40(3): 75 − 83.
SHEN Tiyan, YU Hanchen, ZHOU Lin, et al. On hedonic price of second-hand houses in Beijing based on multi-scale geographically weighted regression: scale law of spatial heterogeneity [J]. Economic Geography, 2020, 40(3): 75 − 83. |
[40] |
赵春燕. 森林景观斑块边缘效应和耦合机理研究[D]. 长沙: 中南林业科技大学, 2012.
ZHAO Chunyan. Research on Edge Effect and Coupling Mechanism of Forest Landscape Patches [D]. Changsha: Central South University of Forestry and Technology, 2012. |
[41] |
田超, 杨新兵, 刘阳. 边缘效应及其对森林生态系统影响的研究进展[J]. 应用生态学报, 2011, 22(8): 2184 − 2192.
TIAN Chao, YANG Xinbing, LIU Yang. Edge effect and its impacts on forest ecosystem: a review [J]. Chinese Journal of Applied Ecology, 2011, 22(8): 2184 − 2192. |
[42] |
de LIMA R A, OLIVEIRA A A, PITTA G R, et al. The erosion of biodiversity and biomass in the Atlantic forest biodiversity hotspot [J/OL]. Nature Communications, 2020, 11(1): 6347[2023-03-12]. doi:10.1038/s41467-020-20217-w. |