[1] 叶建仁, 吴小芹. 松材线虫病研究进展[J]. 中国森林病虫, 2022, 41(3): 1 − 10.

YE Jianren, WU Xiaoqin. Research progress of pine wilt disease [J]. Forest Pest and Disease, 2022, 41(3): 1 − 10.
[2] 刘彬, 刘青华, 周志春, 等. 马尾松β-蒎烯合酶基因克隆以及对松材线虫侵染的响应[J]. 林业科学研究, 2020, 33(6): 1 − 12.

LIU Bin, LIU Qinghua, ZHOU Zhichun, et al. Cloning of β-pinene synthase gene of Pinus massoniana and response to infection of pine wood nematode [J]. Forest Research, 2020, 33(6): 1 − 12.
[3] 刘彬, 刘青华, 周志春, 等. 基于高通量转录组测序筛选马尾松抗松材线虫病相关基因[J]. 林业科学研究, 2019, 32(5): 1 − 10.

LIU Bing, LIU Qinghua, ZHOU Zhichun, et al. Identification of candidate constitutive expressed resistant genes of pine wilt disease in Pinus massoniana based on high-throughput transcriptome sequencing [J]. Forest Research, 2019, 32(5): 1 − 10.
[4] 徐六一, 章健, 高景斌, 等. 安徽省松材线虫病抗性育种研究进展[J]. 安徽林业科技, 2013, 39(2): 8 − 10, 14.

XU Liuyi, ZHANG Jian, GAO Jingbin, et al. Research progress on breeding to pinewood nematodiasis in Anhui Province [J]. Anhui Forestry Science and Technology, 2013, 39(2): 8 − 10, 14.
[5] 高景斌, 席启俊, 孙主义, 等. 松材线虫病抗性马尾松苗木的选育[J]. 林业科技开发, 2009, 23(1): 91 − 95.

GAO Jingbin, XI Qijun, SUN Zhuyi, et al. Screening and breeding of Pinus massoniana seedlings for resistant to pine wood nematode [J]. Journal of Forestry Engineering, 2009, 23(1): 91 − 95.
[6] 郝焰平, 徐六一, 姜春武, 等. 安徽省适生马尾松优良种源子代抗松材线虫病评价及生长性状研究[J]. 江西农业学报, 2019, 31(3): 41 − 45.

HAO Yanping, XU Liuyi, JIANG Chunwu, et al. Nematode-resistance evaluation and growth trait study of fine offspring of suitable Pinus massoniana provenance in Anhui Province [J]. Acta Agriculturae Jiangxi, 2019, 31(3): 41 − 45.
[7] FRANKEL O H, BROWN A H D. Plant genetic resources today: a critical appraisal [M]// HOLDON J H W. Crop Genetic Resources: Conservation and Evaluation. London: George Allen and Unwin Press, 1984: 249 − 257.
[8] 徐晓美, 李颖, 孙启迪, 等. 辣椒种质材料疫病抗性鉴评及遗传多样性分析[J]. 广东农业科学, 2022, 49(10): 19 − 28.

XU Xiaomei, LI Ying, SUN Qidi, et al. Resistance evaluation and genetic diversity analysis of Phytophthora disease in pepper germplasm materials [J]. Guangdong Agricultural Sciences, 2022, 49(10): 19 − 28.
[9] 周延清. 遗传标记的发展[J]. 生物学通报, 2000, 35(5): 17 − 18.

ZHOU Yanqing. Development of genetic markers [J]. Bulletin of Biology, 2000, 35(5): 17 − 18.
[10] 杨海平, 李继生, 于国强, 等. 分子标记技术在林木育种中的应用[J]. 山东林业科技, 2017, 47(3): 111 − 114.

YANG Haiping, LI Jisheng, YU Guoqiang, et al. Application of molecular marker technology in forest tree breeding [J]. Shandong Forestry Science and Technology, 2017, 47(3): 111 − 114.
[11] 杨汉波, 张蕊, 王帮顺, 等. 基于SSR标记的木荷核心种质构建[J]. 林业科学, 2017, 53(6): 37 − 46.

YANG Hanbo, ZHANG Rui, WANG Bangshun, et al. Construction of core collection of Schima superba based on SSR molecular markers [J]. Scientia Silvae Sinicae, 2017, 53(6): 37 − 46.
[12] 陈存, 丁昌俊, 张静, 等. 美洲黑杨群体结构分析及核心种质库构建[J]. 林业科学, 2020, 56(9): 67 − 76.

CHEN Cun, DING Changjun, ZHANG Jing, et al. Population structure analysis and core collection construction of Populus deltoides [J]. Scientia Silvae Sinicae, 2020, 56(9): 67 − 76.
[13] 陈明堃, 陈璐, 孙维红, 等. 建兰种质资源遗传多样性分析及核心种质构建[J]. 园艺学报, 2022, 49(1): 175 − 186.

CHEN Mingkun, CHEN Lu, SUN Weihong, et al. Genetic diversity analysis and core collection of Cymbidium ensifolium germplasm resources [J]. Acta Horticulturae Sinica, 2022, 49(1): 175 − 186.
[14] RAJPUT S G, SANTRA D K. Evaluation of genetic diversity of Proso millet germplasm available in the United States using simple sequence repeat markers [J]. Crop Science, 2016, 56(5): 2401 − 2409.
[15] LÜ Jiabin, LI Changrong, ZHOU Changpin, et al. Genetic diversity analysis of a breeding population of Eucalyptus cloeziana F. Muell. (Myrtaceae) and extraction of a core germplasm collection using microsatellite markers [J/OL]. Industrial Crops and Products, 2020, 145: 112157[2023-05-26]. doi: 10.1016/j.indcrop.2020.112157.
[16] 唐玉娟, 罗世杏, 黄国弟, 等. 基于SSR荧光标记的杧果种质资源遗传多样性分析及分子身份证构建[J/OL]. 热带作物学报, 2023-01-17[2023-05-26]. http://kns.cnki.net/kcms/detail/46.1019.s.20221122.1956.004.html.

TANG Yujuan, LUO Shixing, HUANG Guodi, et al. Genetic diversity analysis and molecular ID construction of mango germplasm based on SSR fluorescence marker [J/OL]. Chinese Journal of Tropical Crops: 2023-01-17[2023-05-26]. http://kns.cnki.net/kcms/detail/46.1019.s.20221122.1956.004.html.
[17] HU Guangming, JIANG Quan, WANG Zhi, et al. Genetic diversity analysis and core collection construction of the Actinidia chinensis complex (Kiwi fruit) based on SSR Markers [J/OL]. Agronomy, 2022, 12(12): 3078[2023-05-26]. doi: 10.3390/agronomy12123078.
[18] 董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2): 65 − 75.

DONG Hongyu, LIU Qinghua, ZHOU Zhichun, et al. Correlation between heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana [J] Scientia Silvae Sinicae, 2017, 53(2): 65 − 75.
[19] YANG Hanbo, LIU Qinghua, ZHANG Rui, et al. Genetic diversity of second generation-parental germplasm of masson pine revealed by SSR markers and establishment of a core germplasm collection [J]. Scandinavian Journal of Forest Research, 2021, 36(7/8): 524 − 531.
[20] ROD P, PETER E S. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research an update [J]. Bioinformatics, 2012, 28(19): 2537 − 2539.
[21] KIALINOWSK S, TAPER M L, MARSHALL T C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment: CERVUS LIKELIHOOD MODEL [J]. Molecular Ecology, 2007, 16(5): 1099 − 1106.
[22] PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155(2): 945 − 959.
[23] KIM K W, CHUNG H K, CHO G T, et al. PowerCore: a program applying the advanced M strategy with a heuristic search for establishing core sets [J]. Bioinformatics, 2007, 23(16): 2155 − 2162.
[24] CIPRIANI G, SPADOTTO A, JURMAN L, et al. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L. ) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin [J]. TAG Theoretical and Applied Genetics, 2010, 121(8): 1569 − 1585.
[25] LIU K, MUSE S V. PowerMarker: integrated analysis environment for genetic marker data [J]. Bioinformatics, 2005, 21(9): 2128 − 2129.
[26] 杨梅, 张敏, 师守国, 等. 武当木兰种群遗传结构的ISSR分析[J]. 林业科学, 2014, 50(1): 76 − 81.

YANG Mei, ZHANG Min, SHI Shouguo, et al. Analysis of genetic structure of Magonlia sprengeri populations based on ISSR marker [J]. Scientia Silvae Sinicae, 2014, 50(1): 76 − 81.
[27] 沈敬理, 白天道, 陈亚斌, 等. 马尾松无性系种子园亲本指纹图谱构建[J]. 分子植物育种, 2015, 13(3): 646 − 652.

SHEN Jingli, BAI Tiandao, CHEN Yabin, et al. The fingerprints construction of clonal in Pinus massoniana seed orchard [J]. Molecular Plant Breeding, 2015, 13(3): 646 − 652.
[28] 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109 − 118.

GAO Jingbin, XU Liuyi, YE Jianren. Growth and genetic diversity analysis of clones screened by phenotypical resistance to pine wilt disease in Pinus massoniana [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(5): 109 − 118.
[29] 谢立峰, 李宁, 李烨, 等. 茄子种质遗传多样性及群体结构的SRAP分析[J]. 植物学报, 2019, 54(1): 58 − 63.

XIE Lifeng, LI Ning, LI Ye, et al. Genetic diversity and population structure of eggplant (Solanum melongena) germplasm resources based on SRAP method [J]. Chinese Bulletin of Botany, 2019, 54(1): 58 − 63.
[30] 魏利斌, 苗红梅, 李春, 等. 芝麻SNP和InDel标记遗传多样性、群体结构及连锁不平衡分析[J]. 分子植物育种, 2017, 15(8): 3070 − 3079.

WEI Libin, MIAO Hongmei, LI Chun, et al. Genetic diversity, population strcture and linkage disequilibrium analysis of Sesame using SNP and InDel markers [J]. Molecular Plant Breeding, 2017, 15(8): 3070 − 3079.
[31] 方乐成, 夏慧敏, 麻文俊, 等. 基于SSR标记的楸树遗传多样性及核心种质构建[J]. 东北林业大学学报, 2017, 45(8): 1 − 5.

FANG Lecheng, XIA Huimin, MA Wenjun, et al. Genetic diversity analysis and primary core collection of Catalpa bungei germplasm with SSR markers [J]. Journal of Northeast Forestry University, 2017, 45(8): 1 − 5.
[32] WANG J C, HU J, XU H M, et al. A strategy on constructing core collections by least distance stepwise sampling [J]. Theoretical and Applied Genetics, 2007, 115(1): 1 − 8.
[33] ESCRIBANO P, VIRUEL M A, HORMAZA J I. Comparison of different methods to construct a core germplasm collection in woody perennial species with simple sequence repeat markers. a case study in cherimoya (Annona cherimola, Annonaceae), an underutilised subtropical fruit tree species [J]. Annals of Applied Biology, 2008, 153(1): 25 − 32.
[34] 李魁鹏, 陈仕昌, 程琳, 等. 基于SSR标记构建广西杉木核心种质[J]. 广西科学, 2021, 28(5): 511 − 519.

LI Kuipeng, CHEN Shichang, CHENG Lin, et al. Construction of core germplasm of Cunninghamia lanceolata in Guangxi based on SSR marker [J]. Guangxi Sciences, 2021, 28(5): 511 − 519.
[35] 黄小凤, 韦阳连, 袁叶, 等. 基于SNP分子标记的221份荔枝品种(品系)的遗传多样性分析及核心种质库构建[J]. 植物资源与环境学报, 2022, 31(4): 74 − 84.

HUANG Xiaofeng, WEI Yanglian, YUAN Ye, et al. Genetic diversity analysis and core collection construction of 221 cultivars (strains) of Litchi chinensis based on SNP molecular markers [J]. Journal of Plant Resources and Environment, 2022, 31(4): 74 − 84.
[36] 张馨方, 张树航, 李颖, 等. 基于SSR标记构建燕山板栗核心种质[J]. 华北农学报, 2021, 36(增刊1): 31 − 38.

ZHANG Xinfang, ZHANG Shuhang, LI Ying, et al. Construction of core collection of Yanshan chestnut germplasm based on SSR marker [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(suppl 1): 31 − 38.
[37] 李自超, 张洪亮, 曾亚文, 等. 云南地方稻种资源核心种质取样方案研究[J]. 中国农业科学, 2000, 33(5): 1 − 7.

LI Zichao, ZHANG Hongliang, ZENG Yawen, et al. Study on sampling schemes of core collection of local varieties of rice in Yunnan, China [J]. Scientia Agricultura Sinica, 2000, 33(5): 1 − 7.