[1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1985: 16−27.

Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1985: 16−27.
[2] 王黎, 周琪, 高燕会. 石蒜属种间杂交种的鉴定和分子身份证构建[J]. 浙江农林大学学报, 2022, 39(3): 562−570.

WANG Li, ZHOU Qi, GAO Yanhui. Construction of molecular identification card of Lycoris interspecific hybrids[J]. Journal of Zhejiang A&F University, 2022, 39(3): 562−570.
[3] 张兆金. 石蒜属植物在园林绿化中的应用研究[J]. 农村经济与科技, 2021, 32(21): 56−57.

ZHANG Zhaojin. Research on the application of Lycoris plants in landscape greening[J]. Rural Economy and Science-Technology, 2021, 32(21): 56−57.
[4] 刘建霞, 王文庆, 薛乃雯, 等. 14个不同产地藜麦种质染色体核型分析[J]. 作物杂志, 2024(3): 82−89.

LIU Jianxia, WANG Wenqing, XUE Naiwen, et al. Chromosome karyotype analysis of 14 Quinoa germplasms from different habitats[J]. Crops, 2024(3): 82−89.
[5] 曲荣举, 刘玉萍, 陈金元, 等. 苦马豆(Sphaerophysa salsula) 6个不同居群的染色体核型分析[J]. 草地学报, 2024, 32(8): 2469−2477.

QU Rongju, LIU Yuping, CHEN Jinyuan, et al. Chromosome karyotype analysis from six different populations of sphaerophysa salsula (Fabaceae)[J]. Acta Agrestia Sinica, 2024, 32(8): 2469−2477.
[6] 马军, 宋承泽, 丁海燕, 等. 油用型向日葵矮大头杂交种染色体核型分析[J]. 东北农业科学, 2022, 47(5): 47−49.

MA Jun, SONG Chengze, DING Haiyan, et al. Karyotype analysis of oil sunflower hybrid Aaidatou[J]. Journal of Northeast Agricultural Sciences, 2022, 47(5): 47−49.
[7] 肖孔钟, 李慧, 晏键行, 等. 三种葱莲属植物的倍性及FISH核型分析[J]. 草地学报, 2024, 32(2): 444−449.

XIAO Kongzhong, LI Hui, YAN Jianxing, et al. Analysis of ploidy levels and FISH karyotypes of three Zephyranthes cultivars[J]. Acta Agrestia Sinica, 2024, 32(2): 444−449.
[8] 柯丽霞, 孙叶根, 郑艳, 等. 石蒜属三种植物的核型研究[J]. 安徽师大学报(自然科学版), 1998, 21(4): 343−348.

KE Lixia, SUN Yegen, ZHENG Yan, et al. Karyotype analysis of three species of Lycoris Herb.[J]. Journal of Anhui Normal University (Natural Science), 1998, 21(4): 343−348.
[9] 徐炳声, 黄少甫, 赵治芬, 等. 安徽石蒜和中国石蒜染色体核型的分析[J]. 云南植物研究, 1984, 6(1): 79−83.

HSU Bingsheng, HUANG Shaofu, ZHAO Zhifen, et al. Karyotype analyses in Lycoris anhweiensis and L. chinensis[J]. Acta Botanica Yunnanica, 1984, 6(1): 79−83.
[10] 徐炳声, 黄少甫, 赵治芬, 等. 石蒜Lycoris radiata (L’Her. ) Herb. 及其矮小变种var. pumila Gery染色体核型的分析[J]. 植物研究, 1984, 4(1): 112−117.

HSU Bingsheng, HUANG Shaofu, ZHAO Zhifen, et al. Karyotype analyses in Lycoris radiata (L’Her. ) Herb. var. pumila Gery[J]. Bulletin of Botanical Research, 1984, 4(1): 112−117.
[11] 张悦, 王兴达, 吴云燕, 等. 基于荧光原位杂交的7种石蒜属植物的核型分析[J/OL]. 分子植物育种, 2022-04-29[2024-07-01]. https://kns.cnki.net/kcms/detail/46.1068.s.20220428.1126.007.html.

ZHANG Yue, WANG Xingda, WU Yunyan, et al. Karyotype analysis of seven Lycoris species based on fluorescence in situ hybridization[J/OL]. Molecular Plant Breeding, 2022-04-29[2024-07-01]. https://kns.cnki.net/kcms/detail/46.1068.s.20220428.1126.007.html.
[12] CHEN H, CONTRERAS R N. Near-hexaploid and near-tetraploid aneuploid progenies derived from backcrossing tetraploid parents Hibiscus syriacus × (H. syriacus × H. paramutabilis)[J/OL]. Genes, 2022, 13(6): 1022[2024-07-01]. DOI: 10.3390/genes13061022.
[13] CUI Litao, CHEN Tai, ZHAO Xin, et al. Karyotype analysis, genomic and fluorescence in situ hybridization (GISH and FISH) reveal the ploidy and parental origin of chromosomes in Paeonia itoh hybrids[J/OL]. International Journal of Molecular Sciences, 2022, 23 (19): 11406[2024-07-01]. DOI: 10.3390/ijms231911406.
[14] PARK I, CHOI B, WEISS-SCHNEEWEISS H, et al. Comparative analyses of complete chloroplast genomes and karyotypes of allotetraploid Iris koreana and its putative diploid parental species (Iris series chinenses, Iridaceae)[J/OL]. International Journal of Molecular Sciences, 2022, 23 (18): 10929[2024-07-01]. DOI: 10.3390/ijms231810929.
[15] 高燕会. 四个栽培棉种间的种间杂交及其遗传与系统发育研究[D]. 杭州: 浙江大学, 2004.

GAO Yanhui. Study on the Interspecies Hybrid and Genetics and Systematic Development between the Four Cultivated Cotton Species[D]. Hangzhou: Zhejiang University, 2004.
[16] 李懋学, 陈瑞阳. 关于植物核型分析的标准化问题[J]. 武汉植物学研究, 1985, 3(4): 297−302.

LI Maoxue, CHEN Ruiyang. A suggestion on the standardization of karyotype analysis in plants[J]. Journal of Wuhan Botanical Research, 1985, 3(4): 297−302.
[17] LEVAN A, FREDGA K, SANDBERG A A. Nomenclature for centromeric position on chromosomes[J]. Hereditas, 2009, 52(2): 201−220.
[18] STEBBINS G L. Chromosomal Evolution in Higher Plants[M]. London: Edward Arnold, 1971: 85−104.
[19] LIU Kun, MENG Weiqi, ZHENG Lu, et al. Cytogeography and chromosomal variation of the endemic East Asian herb Lycoris radiata[J]. Ecology and Evolution, 2019, 9(12): 6849−6859.
[20] ZHOU Shoubiao, YU Benqi, LUO Qi, et al. Karyotypes of six populations of Lycoris radiata and discovery of the tetraploid[J]. Acta Phytotaxonomica Sinica, 2007, 45(4): 513−522.
[21] 马誉, 康晓玲, 郑明燕, 等. 6种蔷薇属植物的染色体核型分析[J/OL]. 分子植物育种, 2023-03-31[2024-07-01]. https://kns.cnki.net/kcms/detail/46.1068.S.20230331.1358.016.html.

MA Yu, KANG Xiaoling, ZHENG Mingyan, et al. Karyotype analysis of six species of Rosa plants[J/OL]. Molecular Plant Breeding, 2023-03-31[2024-07-01]. https://kns.cnki.net/kcms/detail/46.1068.S.20230331.1358.016.html.
[22] LUO Xiaomei, LIU Juncheng. Fluorescence in situ hybridization (FISH) analysis of the locations of the oligonucleotides 5S rDNA, (AGGGTTT)3, and (TTG)6 in three genera of Oleaceae and their phylogenetic framework[J/OL]. Genes, 2019, 10 (5): 375[2024-07-01]. DOI: 10.3390/genes10050375.
[23] LIU Maosen, TSENG S H, TSAI C C, et al. Chromosomal variations of Lycoris species revealed by FISH with rDNAs and centromeric histone H3 variant associated DNAs[J/OL]. PLoS One, 2021, 16 (9): e0258028[2024-07-01]. DOI: 10.1371/journal.pone.0258028.
[24] DING Xiaoliu, XU Tingliang, WANG Jing, et al. Distribution of 45S rDNA in modern rose cultivars (Rosa hybrida), Rosa rugosa, and their interspecific hybrids revealed by fluorescence in situ hybridization[J]. Cytogenetic and Genome Research, 2016, 149(3): 226−235.