[1] HU Hangwei, CHEN Deli, HE Jizheng. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates [J]. FEMS Microbiol Rev, 2015, 39(5): 729 − 749.
[2] SAXE H, CANNELL M G R, JOHNSEN Q, et al. Tree and forest functioning in Response to global warming [J]. New Phytol, 2001, 149(3): 369 − 399.
[3] 赵悦. 转Bt基因抗虫棉根分泌物对土壤N转化的影响及机制[D]. 武汉: 华中农业大学, 2016

ZHAO Yui. Effect and Mechanis of Root Exudates from Transgenic Bt Cotton on the Soil N Cycling[J]. Wuhan: Huazhong Agricultural University, 2016.
[4] 贺纪正, 张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报, 2009, 29(1): 406 − 415.

HE Jizheng, ZHANG Limei. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle [J]. Acta Ecol Sin, 2009, 29(1): 406 − 415.
[5] HUDSON J M G, HENRY G H R. Increased plant biomass in a high Arctic heath community from 1981 to 2008 [J]. Ecology, 2009, 90(10): 2657 − 2663.
[6] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1): 98 − 108.

HE Jizheng, ZHANG Limei. Key processes and microbial mechanisms of soil nitrogen transformation [J]. Microbiol Bull, 2013, 40(1): 98 − 108.
[7] OFFRE P, SPANG A, SCHLEPER C. Archaea in biogeochemical cycles [J]. Annu Rev Microbiol, 2013, 67(1): 437 − 457.
[8] DRAKE J E, ANNE G B, HOFMOCKEL K S, et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2 [J]. Ecol Lett, 2011, 14(4): 349 − 357.
[9] MEIER I C, FINZI A C, PHILLIPS R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools [J]. Soil Biol Biochem, 2017, 106: 119 − 128.
[10] YIN Huajun, LI Yufei, XIAO Juan, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming [J]. Global Change Biol, 2013, 19(7): 2158 − 2167.
[11] PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation [J]. Ecol Lett, 2011, 14(2): 187 − 194.
[12] SUBBARAO G V, NAKAHARA K, HURTADO M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures [J]. Proc Natl Acad Sci, 2009, 106(41): 17302 − 17307.
[13] COSKUN D, BRITTO D T, SHI Weiming, et al. How plant root exudates shape the nitrogen cycle [J]. Trends Plant Sci, 2017, 22(8): 661 − 673.
[14] HAICHAR F E, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground [J]. Soil Biol Biochem, 2014, 77: 69 − 80.
[15] NGUYEN C. Rhizodeposition of organic C by plants: mechanisms and controls [J]. Agronomie, 2003, 23(5/6): 375 − 396.
[16] BRZOSTEK E R, GRECO A, DRAKE, J E, et al. Root carbon inputs to the rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in temperate forest soils [J]. Biogeochemistry, 2013, 115: 65 − 76.
[17] HAMER U, MARSCHNER B. Priming effects of sugars, amino acids, organic acids and catechol on the mineralization of lignin and peat [J]. J Plant Nutr Soil Sci, 2002, 165(3): 261 − 268.
[18] LANGARICA-FUENTES A, MANRUBIA M, GILES M E, et al. Effect of model root exudate on denitrifier community dynamics and activity at different water-filled pore space levels in a fertilised soil [J]. Soil Biol Biochem, 2018, 120: 70 − 79.
[19] YUAN Yuanshuang, ZHAO Wenqiang, ZHANG Ziliang, et al. Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots [J]. Soil Biol Biochem, 2018, 121: 16 − 23.
[20] BLAGODATSKAYA E, YUYUKINA T, BLAGODATSKY S, et al. Three-source-partitioning of microbial biomass and of CO2 efflux from soil to evaluate mechanisms of priming effects [J]. Soil Biol Biochem, 2011, 43(4): 778 − 786.
[21] BERNAL B, MCKINLEY D C, HUNGATE B A, et al. Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs [J]. Soil Biol Biochem, 2016, 98: 85 − 94.
[22] 胡凯, 陶建平, 黄科, 等. 模拟根系分泌物碳输入对凋落叶分解中微生物群落动态的影响[J]. 应用与环境生物学报, 2020, 26(2): 417 − 424.

HU Kai, TAO Jianping, HUANG Ke, et al. Effects of simulated root exudate carbon input on the dynamics of microbial community during litter decomposition [J]. Chin J Appl Environ Biol, 2020, 26(2): 417 − 424.
[23] DRAKE J E, DARBY B A, GIASSON M A, et al. Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest [J]. Biogeosciences, 2013, 10(2): 821 − 838.
[24] TIAN Kai, KONG Xiangshi, YUAN Liuhuan, et al. Priming effect of litter mineralization: the role of root exudate depends on its interactions with litter quality and soil condition [J]. Plant Soil, 2019, 440(1/2): 457 − 471.
[25] 梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C∶N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5): 466 − 476.

LIANG Rubiao, LIANG Jing, QIAO Mingfeng, et al. Effects of simulated root exudates C∶N stoichiometry on soil carbon dynamics and microbial community structure in subalpine forests of western Sichuan [J]. Chin J Plant Ecol, 2015, 39(5): 466 − 476.
[26] 尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望[J]. 植物生态学报, 2018, 42(11): 1055 − 1070.

YIN Huanjun, ZHANG Ziliang, LIU Qing. Research on the ecology of forest root exudates: problems and prospects [J]. Chin J Plant Ecol, 2018, 42(11): 1055 − 1070.
[27] NOBILI M D, CONTIN M, MONDINI C, et al. Soil microbial biomass is triggered into activity by trace amounts of substrate [J]. Soil Biol Biochem, 2001, 33(9): 1163 − 1170.
[28] KUZYAKOV Y, BOL R. Sources and mechanisms of priming effect induced in two grassland soils amended with slurry and sugar [J]. Soil Biol Biochem, 2006, 38(4): 747 − 758.
[29] LANDI L, VALORI F, ASCHER J, et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils [J]. Soil Biol Biochem, 2006, 38(3): 509 − 516.
[30] KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates [J]. Nat Clim Change, 2015, 5(6): 588 − 595.
[31] BERTIN C, YANG X, WESTON L A. The role of root exudates and allelochemicals in the rhizosphere [J]. Plant Soil, 2003, 256(1): 67 − 83.
[32] JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere: carbon trading at the soil-root interface [J]. Plant Soil, 2009, 321(1/2): 5 − 33.
[33] KUZYAKOV Y. Review: factors affecting rhizosphere priming effects [J]. J Plant Nutr Soil Sci, 2002, 165(4): 382 − 396.
[34] WANG Qitong, CHEN Lanying, XU Hang, et al. The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability[J]. Rhizosphere, 2021, 17(3): 100263. doi: 10.1016/j.rhisph.2020.100263.
[35] WEI He, YUAN Yuanshuang, ZHANG Ziliang, et al. Effect of N addition on root exudation and associated microbial N transformation under Sibiraea angustata in an alpine shrubland [J]. Plant Soil, 2021, 460: 469 − 481.
[36] MOORHEAD D L, SINSABAUGH R L. A theoretical model of litter decay and microbial interaction [J]. Ecol Monogr, 2006, 76(2): 151 − 174.
[37] HESSEN D O, AGREN G I, ANDERSON T R, et al. carbon sequestration in ecosystems: the role of stoichiometry [J]. Ecology, 2004, 85(5): 1179 − 1192.
[38] CHEN Ruirui, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories [J]. Global Change Biol, 2014, 20(7): 2356 − 2367.
[39] JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils-misconceptions and knowledge gaps [J]. Plant Soil, 2003, 248(1): 31 − 41.
[40] JOHANSSON E M, FRANSSON P M A, FINLAY R D, et al. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2 [J]. Soil Biol Biochem, 2009, 41(6): 1111 − 1116.
[41] 罗永清, 赵学勇, 李美霞. 植物根系分泌物生态效应及其影响因素研究综述[J]. 应用生态学报, 2012, 23(12): 3496 − 3504.

LUO Yongqing, ZHAO Xueyong, LI Meixia. Ecological effect of plant root exudates and related affecting factors: a review [J]. Chin J Appl Ecol, 2012, 23(12): 3496 − 3504.
[42] 陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景[J]. 土壤学报, 2021, 58(3): 545 − 557.

LU Yufang, SHI Weiming. Progress in research and agricultural application prospect of biological nitrification inhibitors [J]. Acta Pedol Sin, 2021, 58(3): 545 − 557.
[43] 王莉, BOWATTE S, 侯扶江. 生物硝化抑制剂(BNI)在提高农业生产系统中氮利用率方面的研究进展[J]. 草业科学, 2020, 37(3): 592 − 601.

WANG Li, BOWATTE S, HOU Fujiang. Research progress of biological nitrification inhibitor (BNI) in improving nitrogen use efficiency in agricultural production systems [J]. Pratacultural Sci, 2020, 37(3): 592 − 601.
[44] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification [J]. Plant Soil, 2008, 313(1/2): 89 − 99.
[45] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization [J]. Plant Soil, 2013, 366(1/2): 243 − 259.
[46] NARDI P, AKUTSU M, PARIASCA-TANAKA J, et al. Effect of methyl 3-4-hydroxyphenyl propionate, a sorghum root exudate, on N dynamic, potential nitrification activity and abundance of ammonia-oxidizing bacteria and archaea [J]. Plant Soil, 2013, 367(9): 627 − 637.
[47] O’SULLIVAN C A, FILLERY I R P, ROPER M M, et al. Identification of several wheat landraces with biological nitrification inhibition capacity [J]. Plant Soil, 2016, 404(2): 61 − 74.
[48] LI Sun, LU Yufang, YU Fangwei, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency [J]. New Phytol, 2016, 212(3): 646 − 656.
[49] JUAN P T, PIERFRANCESCO N, MATTHIAS W. Nitrification inhibition activity, a novel trait in root exudates of rice [J]. Aob Plants, 2010, 9(17): plq014. doi: 10.1093/aobpla/plq014.
[50] SAHRAWAT K L, MUKERJEE S K. Nitrification inhibitors (Ⅰ) studies with karanjin, a furanolflavonoid from karanja (Pongamia glabra) seeds [J]. Plant Soil, 1977, 47(1): 27 − 36.
[51] MAJUMDAR D. Suppression of nitrification and N2O emission by karanjin-a nitrification inhibitor prepared from karanja (Pongamia glabra Vent. ) [J]. Chemosphere, 2002, 47(8): 845 − 850.
[52] SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification [J]. Plant Soil, 2008, 313: 89 − 99.
[53] SUBBARAO G V, KISHII M, NAKAHARA K, et al. Biological nitrification inhibition (BNI): is there potential for genetic interventions in the Triticeae? [J]. Breed Sci, 2009, 59(5): 529 − 545.
[54] 黄益宗, 张福珠, 刘淑琴, 等. 化感物质对土壤N2O释放影响的研究[J]. 环境科学学报, 1999, 19(5): 478 − 482.

HUANG Yizong, ZHANG Fuzhu, LIU Shuqin, et al. Effect of allelochemicals on N2O emission from soil [J]. Acta Sci Circumstantiae, 1999, 19(5): 478 − 482.
[55] ZHANG Xiaonan, LU Yufang, YANG Ting, et al. Factors influencing the release of the biological nitrification inhibitor 1, 9-decanediol from rice (Oryza sativa L. ) roots [J]. Plant Soil, 2019, 9(1): 253 − 265.
[56] ZENG Houqing, DI Tingjun, ZHU Yiyong, et al. Transcriptional response of plasma membrane H+-ATPase genes to ammonium nutrition and its functional link to the release of biological nitrification inhibitors from sorghum roots [J]. Plant Soil, 2016, 398(1/2): 301 − 312.
[57] WOLDENDORP J W, LAANBROEK H J. Activity of nitrifiers in relation to nitrogen nutrition of plants in natural ecosystems [J]. Plant Soil, 1989, 115(2): 217 − 228.
[58] MAHMOOD T, ALI R, MALIK K A, et al. Denitrification with and without maize plants (Zea mays L. ) under irrigated field conditions [J]. Biol Fert Soils, 1997, 24(3): 323 − 328.
[59] PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: the microbial ecology of the rhizosphere [J]. Nat Rev Microbiol, 2013, 11(11): 789 − 799.
[60] GROFFMAN P M, BUTTERBACH-BAHL K, FULWEILER R W, et al. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models [J]. Biogeochemistry, 2009, 93(1/2): 49 − 77.
[61] 庄姗, 林伟, 丁军军, 等. 不同根系分泌物对土壤N2O排放及同位素特征值的影响 [J]. 中国农业科学, 2020, 53(9): 1860 − 1873.

ZHUANG Shan, LIN Wei, DING Junjun, et al. Effects of different root exudates on soil N2O emission and isotopic characteristic values [J]. China Agric Sci, 2020, 53(9): 1860 − 1873.
[62] GILES M E, DANIELL T J, BAGGS E M. Compound driven differences in N2 and N2O emission from soil; the role of substrate use efficiency and the microbial community [J]. Soil Biol Biochem, 2017, 106(11): 90 − 98.
[63] GUYONNET J P, FLORIAN V, GUILLAUME M, et al. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites [J]. FEMS Microbiol Ecol, 2017, 93(4): 4 − 22.
[64] 马舒坦, 颜晓元. 甲酸盐和葡萄糖对2种土壤N2O排放的刺激作用[J]. 农业环境科学学报, 2019, 38(1): 235 − 242.

MA Shutan, YAN Xiaoyuan. Stimulative effects of formate and glucose on N2O emission from two soils [J]. J Agro-Environ Sci, 2019, 38(1): 235 − 242.
[65] 童亮, 李平衡, 周国模, 等. 竹林鞭根系统研究综述[J]. 浙江农林大学学报, 2019, 36(1): 183 − 192.

TONG Liang, LI Pingheng, ZHOU Guomo, et al. A review of research about rhizome-root system in bamboo forest [J]. J Zhejiang A&F Univ, 2019, 36(1): 183 − 192.
[66] ZUMFT W G. Cell biology and molecular basis of denitrification [J]. Microbiol Mol Biol Rev, 1997, 61(4): 533 − 616.
[67] MURRAY P J, HATCH D J, DIXON E R, et al. Denitrification potential in a grassland subsoil: effect of carbon substrates [J]. Soil Biol Biochem, 2004, 36(3): 545 − 547.
[68] MOUNIER E, HALLET S, CHÈNEBY D, et al. Influence of maize mucilage on the diversity and activity of the denitrifying community [J]. Environ Microbiol, 2010, 6(3): 301 − 312.
[69] MORLEY N J, RICHARDSON D J, BAGGS E M, et al. Substrate induced denitrification over or under estimates shifts in soil N2/N2O ratios [J]. PLoS One, 2014, 9(9): 792 − 800.
[70] HENRY S, TEXIER S, HALLET S, et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates [J]. Environ Microbiol, 2010, 10(11): 3082 − 3092.