[1] |
ZHANG Wenbo, HU Tao, CHANG Yanting, et al. Correlation between genetic characteristics, cell structure and material properties of moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) in different areas of China [J/OL]. Forests, 2022, 13(1): 107[2022-09-30]. doi:10.3390/F13010107. |
[2] |
闫承琳, 刘东, 刘子昕, 等. 基于木塑基耗材的增材制造技术研究进展[J]. 林业工程学报, 2022, 7(4): 22 − 30.
YAN Chenglin, LIU Dong, LIU Zixin, et al. Research progress of additive manufacturing technology and equipment based on wood-plastic consumables [J]. Journal of Forestry Engineering, 2022, 7(4): 22 − 30. |
[3] |
陈铭, 郭琳, 郑笑, 等. 中国15个主产区毛竹纤维形态比较[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 7 − 12.
CHEN Ming, GUO Lin, ZHENG Xiao, et al. Comparison of cell morphology of moso bamboo fibers from fifteen main producing regions in China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 7 − 12. |
[4] |
RACKL M, TOP F, MOIHOEK C P, et al. Feeding system for wood chips: a DEM study to improve equipment performance [J]. Biomass and Bioenergy, 2017, 98: 43 − 52. |
[5] |
FRACZEK J, ZIOBECKI A, ZEMANEK J. Assessment of angle of repose of granular plant material using computer image analysis [J]. Journal of Food Engineering, 2007, 83(1): 17 − 22. |
[6] |
RAMIREZ-GOMEZ A, GALLEGO E, FUENTES J M, et al. Values for particle-scale properties of biomass briquettes made from agroforestry residues [J]. Particuology, 2014, 12: 100 − 106. |
[7] |
GRIMA A P, WYPYCH P W. Discrete element simulations of granular pile formation [J]. Engineering Computations, 2011, 28(3): 314 − 339. |
[8] |
KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere discrete element method [J]. Powder Technology, 2008, 188(2): 153 − 165. |
[9] |
IBARRA J, ESTAY D, PACHECO A, et al. Bond calibration method for macroparameters using the discrete element method framework [J/OL]. Engineering Fracture Mechanics, 2022, 262: 108223[2022-09-30]. doi:10.1016/j.engfracmech.2021.108223. |
[10] |
ADAJAR J B, AIFARO M, CHEN Y, et al. Calibration of discrete element parameters of crop residues and their interfaces with soil [J/OL]. Computers and Electronics in Agriculture, 2021, 188: 106349[2022-09-30]. doi: 10.1016/j.compag.2021.106349. |
[11] |
ZHAO Liang, ZHOU Hongping, XU Linyun, et al. Parameter calibration of coconut bran substrate simulation model based on discrete element and response surface methodology [J]. Powder Technology, 2022, 395: 183 − 194. |
[12] |
XIA Yidong, CHEN Feiyang, KLINGER J L, et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation [J]. Biosystems Engineering, 2021, 205: 187 − 211. |
[13] |
PACHON-MORALES J, DO H, COLIN J, et al. DEM modelling for flow of cohesive lignocellulosic biomass powders: model calibration using bulk tests [J]. Advanced Powder Technology, 2019, 30(4): 732 − 750. |
[14] |
TAN Yuan, YU Yue, FOTTNER J, et al. Automated measurement of the numerical angle of repose (aMAoR) of biomass particles in EDEM with a novel algorithm [J]. Powder Technology, 2021, 388: 462 − 473. |
[15] |
轻工业部日用化学工业科学研究所. 表面活性剂 粉体和颗粒休止角的测量: GB/T 11986—1989[S]. 北京: 中国标准出版社, 1989.
Institute of Daily Chemical Industry Science, Ministry of Light Industry. Surface Active Agents- Powders and Granules-Measurement of the Angle of Repose: GB/T 11986−1989[S]. Beijing: Standards Press of China, 1989. |
[16] |
ALIZADEH M, ASACHI M, GHADIRI M, et al. A methodology for calibration of DEM input parameters in simulation of segregation of powder mixtures, a special focus on adhesion [J]. Powder Technology, 2018, 339: 789 − 800. |
[17] |
FENG Y T, HAN K, QWEN D R J, et al. Engineering computations on upscaling of discrete element models: similarity principles [J]. Engineering Computations, 2009, 26(6): 599 − 609. |
[18] |
OREFICE L, KHINAST J G. A novel framework for a rational, fully-automatised calibration routine for DEM models of cohesive powders [J]. Powder Technology, 2020, 361: 687 − 703. |
[19] |
COETZEE C. Calibration of the discrete element method: Strategies for spherical and non-spherical particles [J]. Powder Technology, 2020, 364: 851 − 878. |
[20] |
HOSHISHIMA C, OHSAKI S, NAKAMURA H, et al. Parameter calibration of discrete element method modelling for cohesive and non-spherical particles of powder [J]. Powder Technology, 2021, 386: 199 − 208. |
[21] |
杨云芳, 刘志坤. 毛竹材抗拉弹性模量及抗拉强度[J]. 浙江林学院学报, 1996, 13(1): 21 − 27.
YANG Yunfang, LIU Zhikun. Phyllostachys pubescens wood: tensile elastic modulus and tensile strength [J]. Journal of Zhejiang Forestry College, 1996, 13(1): 21 − 27. |
[22] |
李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860.
LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860. |
[23] |
刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125 − 135, 142.
LIU Wenzheng, HE Jin, LI Hongwen, et al. Calibration of simulation parameters for potato minituber based on EDEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125 − 135, 142. |
[24] |
GALLEGO E, FUENTES J, RUIZ Á, et al. Determination of mechanical properties for wood pellets used in DEM simulations [J]. International Agrophysics, 2020, 34(4): 485 − 494. |
[25] |
ZU E X, ZHOU P, JIANG Z H. Discrete element method of coke accumulation: calibration of the contact parameter [J]. IFAC-Papers on Line, 2018, 51(21): 241 − 245. |
[26] |
ZHU Jianzhong, ZOU Meng, LIU Yansong, et al. Measurement and calibration of DEM parameters of lunar soil simulant [J]. Acta Astronautica, 2022, 191: 169 − 177. |
[27] |
周捍东, 徐长妍, 丁沪闽. 木材散碎物料基本堆积特性的研究[J]. 林业和草原机械, 2002(6): 9 − 12, 19.
ZHOU Handong, XU Changyan, DING Humin. Studies on the basic characteristics of wooden bulk materials [J]. Forestry and Grassland Machinery, 2002(6): 9 − 12, 19. |