[1] ZHANG Wenbo, HU Tao, CHANG Yanting, et al. Correlation between genetic characteristics, cell structure and material properties of moso bamboo (Phyllostachys edulis (Carriere) J. Houzeau) in different areas of China [J/OL]. Forests, 2022, 13(1): 107[2022-09-30]. doi:10.3390/F13010107.
[2] 闫承琳, 刘东, 刘子昕, 等. 基于木塑基耗材的增材制造技术研究进展[J]. 林业工程学报, 2022, 7(4): 22 − 30.

YAN Chenglin, LIU Dong, LIU Zixin, et al. Research progress of additive manufacturing technology and equipment based on wood-plastic consumables [J]. Journal of Forestry Engineering, 2022, 7(4): 22 − 30.
[3] 陈铭, 郭琳, 郑笑, 等. 中国15个主产区毛竹纤维形态比较[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 7 − 12.

CHEN Ming, GUO Lin, ZHENG Xiao, et al. Comparison of cell morphology of moso bamboo fibers from fifteen main producing regions in China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 7 − 12.
[4] RACKL M, TOP F, MOIHOEK C P, et al. Feeding system for wood chips: a DEM study to improve equipment performance [J]. Biomass and Bioenergy, 2017, 98: 43 − 52.
[5] FRACZEK J, ZIOBECKI A, ZEMANEK J. Assessment of angle of repose of granular plant material using computer image analysis [J]. Journal of Food Engineering, 2007, 83(1): 17 − 22.
[6] RAMIREZ-GOMEZ A, GALLEGO E, FUENTES J M, et al. Values for particle-scale properties of biomass briquettes made from agroforestry residues [J]. Particuology, 2014, 12: 100 − 106.
[7] GRIMA A P, WYPYCH P W. Discrete element simulations of granular pile formation [J]. Engineering Computations, 2011, 28(3): 314 − 339.
[8] KRUGGEL-EMDEN H, RICKELT S, WIRTZ S, et al. A study on the validity of the multi-sphere discrete element method [J]. Powder Technology, 2008, 188(2): 153 − 165.
[9] IBARRA J, ESTAY D, PACHECO A, et al. Bond calibration method for macroparameters using the discrete element method framework [J/OL]. Engineering Fracture Mechanics, 2022, 262: 108223[2022-09-30]. doi:10.1016/j.engfracmech.2021.108223.
[10] ADAJAR J B, AIFARO M, CHEN Y, et al. Calibration of discrete element parameters of crop residues and their interfaces with soil [J/OL]. Computers and Electronics in Agriculture, 2021, 188: 106349[2022-09-30]. doi: 10.1016/j.compag.2021.106349.
[11] ZHAO Liang, ZHOU Hongping, XU Linyun, et al. Parameter calibration of coconut bran substrate simulation model based on discrete element and response surface methodology [J]. Powder Technology, 2022, 395: 183 − 194.
[12] XIA Yidong, CHEN Feiyang, KLINGER J L, et al. Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation [J]. Biosystems Engineering, 2021, 205: 187 − 211.
[13] PACHON-MORALES J, DO H, COLIN J, et al. DEM modelling for flow of cohesive lignocellulosic biomass powders: model calibration using bulk tests [J]. Advanced Powder Technology, 2019, 30(4): 732 − 750.
[14] TAN Yuan, YU Yue, FOTTNER J, et al. Automated measurement of the numerical angle of repose (aMAoR) of biomass particles in EDEM with a novel algorithm [J]. Powder Technology, 2021, 388: 462 − 473.
[15] 轻工业部日用化学工业科学研究所. 表面活性剂 粉体和颗粒休止角的测量: GB/T 11986—1989[S]. 北京: 中国标准出版社, 1989.

Institute of Daily Chemical Industry Science, Ministry of Light Industry. Surface Active Agents- Powders and Granules-Measurement of the Angle of Repose: GB/T 11986−1989[S]. Beijing: Standards Press of China, 1989.
[16] ALIZADEH M, ASACHI M, GHADIRI M, et al. A methodology for calibration of DEM input parameters in simulation of segregation of powder mixtures, a special focus on adhesion [J]. Powder Technology, 2018, 339: 789 − 800.
[17] FENG Y T, HAN K, QWEN D R J, et al. Engineering computations on upscaling of discrete element models: similarity principles [J]. Engineering Computations, 2009, 26(6): 599 − 609.
[18] OREFICE L, KHINAST J G. A novel framework for a rational, fully-automatised calibration routine for DEM models of cohesive powders [J]. Powder Technology, 2020, 361: 687 − 703.
[19] COETZEE C. Calibration of the discrete element method: Strategies for spherical and non-spherical particles [J]. Powder Technology, 2020, 364: 851 − 878.
[20] HOSHISHIMA C, OHSAKI S, NAKAMURA H, et al. Parameter calibration of discrete element method modelling for cohesive and non-spherical particles of powder [J]. Powder Technology, 2021, 386: 199 − 208.
[21] 杨云芳, 刘志坤. 毛竹材抗拉弹性模量及抗拉强度[J]. 浙江林学院学报, 1996, 13(1): 21 − 27.

YANG Yunfang, LIU Zhikun. Phyllostachys pubescens wood: tensile elastic modulus and tensile strength [J]. Journal of Zhejiang Forestry College, 1996, 13(1): 21 − 27.
[22] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860.

LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860.
[23] 刘文政, 何进, 李洪文, 等. 基于离散元的微型马铃薯仿真参数标定[J]. 农业机械学报, 2018, 49(5): 125 − 135, 142.

LIU Wenzheng, HE Jin, LI Hongwen, et al. Calibration of simulation parameters for potato minituber based on EDEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125 − 135, 142.
[24] GALLEGO E, FUENTES J, RUIZ Á, et al. Determination of mechanical properties for wood pellets used in DEM simulations [J]. International Agrophysics, 2020, 34(4): 485 − 494.
[25] ZU E X, ZHOU P, JIANG Z H. Discrete element method of coke accumulation: calibration of the contact parameter [J]. IFAC-Papers on Line, 2018, 51(21): 241 − 245.
[26] ZHU Jianzhong, ZOU Meng, LIU Yansong, et al. Measurement and calibration of DEM parameters of lunar soil simulant [J]. Acta Astronautica, 2022, 191: 169 − 177.
[27] 周捍东, 徐长妍, 丁沪闽. 木材散碎物料基本堆积特性的研究[J]. 林业和草原机械, 2002(6): 9 − 12, 19.

ZHOU Handong, XU Changyan, DING Humin. Studies on the basic characteristics of wooden bulk materials [J]. Forestry and Grassland Machinery, 2002(6): 9 − 12, 19.