| [1] | SCHWARTZ M D, REED B C, WHITE M A. Assessing satellite-derived start-of-season measures in the conterminous USA [J]. International Journal of Climatology, 2002, 22(14): 1793−1805. |
| [2] | 李雪建. 基于遥感反演的竹林物候时空变异及其对碳循环影响机制研究[D]. 杭州: 浙江农林大学, 2021. LI Xuejian. Spatiotemporal Variation of Bamboo Forest Phenology Based on Remote Sensing Inversion and Its Influence Mechanism on Carbon Cycle[D]. Hangzhou: Zhejiang A&F University, 2021. |
| [3] | FU Y H, ZHAO Hongfang, PIAO Shilong, et al. Declining global warming effects on the phenology of spring leaf unfolding [J]. Nature, 2015, 526(7571): 104−107. |
| [4] | 薛惠鸿, 史锋, GENNARETTI F, 等. 全球变暖背景下中国森林春季木质部物候提前的模拟证据[J]. 中国科学: 地球科学, 2023, 53(10): 2217−2230. XUE Huihong, SHI Feng, GENNARETTI F, et al. Evidence of advancing spring xylem phenology in Chinese forests under global warming [J]. Scientia Sinica (Terrae), 2023, 53(10): 2217−2230. |
| [5] | RICHARDSON A D, KEENAN T F, MIGLIAVACCA M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system [J]. Agricultural and Forest Meteorology, 2013, 169: 156−173. |
| [6] | MO Fei, ZHANG Jian, WANG Jing, et al. Phenological evidence from China to address rapid shifts in global flowering times with recent climate change [J]. Agricultural and Forest Meteorology, 2017, 246: 22−30. |
| [7] | SULLIVAN M K, FAYOLLE A, BUSH E, et al. Cascading effects of climate change: new advances in drivers and shifts of tropical reproductive phenology [J]. Plant Ecology, 2024, 225(3): 175−187. |
| [8] | 谢志英, 朱文泉, 付永硕. 植被物候遥感监测关键问题[J]. 遥感学报, 2024, 28(9): 2131−2143. XIE Zhiying, ZHU Wenquan, FU Yongshuo. Key issues of remote sensing-based vegetation phenology monitoring [J]. National Remote Sensing Bulletin, 2024, 28(9): 2131−2143. |
| [9] | MILLER-RUSHING A J, WELTZIN J. Phenology as a tool to link ecology and sustainable decision making in a dynamic environment [J]. New Phytologist, 2009, 184(4): 743−745. |
| [10] | 翟佳, 袁凤辉, 吴家兵. 植物物候变化研究进展[J]. 生态学杂志, 2015, 34(11): 3237−3243. ZHAI Jia, YUAN Fenghui, WU Jiabing. Research progress on vegetation phenological changes [J]. Chinese Journal of Ecology, 2015, 34(11): 3237−3243. |
| [11] | THOMPSON D R, WEHMANEN O A. Using Landsat digital data to detect moisture stress in corn-soybean growing regions[J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(8): 1087−1093. |
| [12] | CAPARROS-SANTIAGO J A, RODRIGUEZ-GALIANO V. Analysing long-term spatiotemporal land surface phenology patterns over the Iberian Peninsula using 250 m MODIS EVI2 data[J/OL]. Science of the Total Environment, 2024, 954: 176453[2025-05-04]. DOI: 10.1016/j.scitotenv.2024.176453. |
| [13] | XU Wenfang, MA Hanqing, WU Donghai, et al. Assessment of the daily cloud-free MODIS snow-cover product for monitoring the snow-cover phenology over the Qinghai-Tibetan Plateau[J]. Remote Sensing, 2017, 9(6): 585[2025-05-04]. DOI: 10.3390/rs9060585. |
| [14] | HERMANCE J F. Stabilizing high‐order, non‐classical harmonic analysis of NDVI data for average annual models by damping model roughness [J]. International Journal of Remote Sensing, 2007, 28(12): 2801−2819. |
| [15] | KOVALSKYY V, ROY D P. The global availability of Landsat 5 TM and Landsat 7 ETM + land surface observations and implications for global 30 m Landsat data product generation [J]. Remote Sensing of Environment, 2013, 130: 280−293. |
| [16] | ZHANG H K, ROY D P, YAN Lin, et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences [J]. Remote Sensing of Environment, 2018, 215: 482−494. |
| [17] | ONOJEGHUO A O, BLACKBURN G A, WANG Qunming, et al. Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series [J]. GIScience & Remote Sensing, 2018, 55(5): 659−677. |
| [18] | SONG Guangqin, WANG Jing, ZHAO Yingyi, et al. Scale matters: spatial resolution impacts tropical leaf phenology characterized by multi-source satellite remote sensing with an ecological-constrained deep learning model[J/OL]. Remote Sensing of Environment, 2024, 304: 114027[2025-05-05]. DOI: 10.1016/j.rse.2024.114027. |
| [19] | GUO Xiaojie, CAO Xiaochun. FIND: a neat flip invariant descriptor[C]//PRICHARD B N, GILLAM P M. Proceedings of the 2010 20th International Conference on Pattern Recognition. IEEE Computer Society, 2010: 515−518. |
| [20] | ZHANG Kun, ZHU Changming, LI Junli, et al. Reconstruction of dense time series high spatial resolution NDVI data using a spatiotemporal optimal weighted combination estimation model based on Sentinel-2 and MODIS[J/OL]. Ecological Informatics, 2024, 82: 102725[2025-05-05]. DOI: 10.1016/j.ecoinf.2024.102725. |
| [21] | WILCOX R. The Regression Smoother LOWESS: A confidence band that allows heteroscedasticity and has some specified simultaneous probability coverage[J/OL]. Journal of Modern Applied Statistical Methods, 2017, 16: 35603179[2025-05-05]. DOI: 10.22237/JMASM/1509494580. |
| [22] | SUN Chenrun, XUE Zhaohui, ZHANG Ling, et al. Local peak Savitzky-Golay for spatio-temporal reconstruction of landsat NDVI time series: a case study over the Qinghai-Tibet Plateau [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13439−13455. |
| [23] | ZHANG Xiaomo, SUN Xin, LIN Zhulu. Improving soil moisture prediction using Gaussian process regression[J/OL]. Smart Agricultural Technology, 2025, 11: 100905[2025-05-05]. DOI: 10.1016/j.atech.2025.100905. |
| [24] | GONG Zheng, GE Wenyan, GUO Jiaqi, et al. Satellite remote sensing of vegetation phenology: progress, challenges, and opportunities [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 217: 149−164. |
| [25] | VERBESSELT J, HYNDMAN R, ZEILEIS A, et al. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series [J]. Remote Sensing of Environment, 2010, 114(12): 2970−2980. |
| [26] | SHI Hua, XIAN G. Assessing gap-filled Landsat land surface temperature time-series data using different observational datasets [J]. International Journal of Remote Sensing, 2025, 46(12): 4559−4582. |
| [27] | RICHARDSON A D. PhenoCam: an evolving, open-source tool to study the temporal and spatial variability of ecosystem-scale phenology[J/OL]. Agricultural and Forest Meteorology, 2023, 342: 109751[2025-05-05]. DOI: 10.1016/j.agrformet.2023.109751. |