[1] 武忠康. 桂花在园艺中的应用[J]. 现代园艺, 2022, 45(15): 134 − 135.

WU Zhongkang. Application of Osmanthus fragrans in horticulture [J]. Contemporary Horticulture, 2022, 45(15): 134 − 135.
[2] WU Lipeng, LIU Junyi, HUANG Weisu, et al. Exploration of Osmanthus fragrans Lour.’s composition, nutraceutical functions and applications [J/OL]. Food Chemistry, 2022, 377: 131853[2022-11-28]. doi: 10.1016/j.foodchem.2021.131853.
[3] WANG Limei, LI Maoteng, JIN Wenwen, et al. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering [J]. Food Chemistry, 2009, 114(1): 233 − 236.
[4] WU Lichen, CHANG Lihui, CHEN Sihan, et al. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: a potential natural and functional food flavor additive [J]. LWT-Food Science and Technology, 2009, 42(9): 1513 − 1519.
[5] CAI Xuan, MAI Rongzhang, ZOU Jingjing, et al. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS [J]. Journal of Zhejiang University Science B, 2014, 15(7): 638 − 648.
[6] ZOU Jingjing, ZHOU Yuan, CAI Xuan, et al. Increases in DNA fragmentation and role of ethylene during the petal senescence of Osmanthus fragrans [J]. Postharvest Biology and Technology, 2014, 93: 97 − 105.
[7] ZOU Jingjing, CAI Xuan, WANG Caiyun. The spatial and temporal distribution of programmed cell death (PCD) during petal senescence of Osmanthus fragrans [J]. Acta Horticulturae, 2017, 1185(39): 315 − 324.
[8] 洪方蕾, 陆瑶, 俞世姣, 等. 桂花OfABFs基因克隆和表达分析[J/OL]. 浙江农林大学学报, 2023[2022-11-28]. doi: 10.11833/j.issn.2095-0756.20220264.

HONG Fanglei, LU Yao, YU Shijiao, et al. Cloning and expression analysis of OfABFs gene in Osmanthus fragrans [J/OL]. Journal of Zhejiang A&F University, 2023, 40(3)[2022-11-28]. doi: 10.11833/j.issn.2095-0756.20220264.
[9] 蒋琦妮, 付建新, 张超, 等. 桂花OfAP1基因的克隆及表达分析[J]. 浙江农林大学学报, 2019, 36(4): 664 − 669.

JIANG Qini, FU Jianxin, ZHANG Chao, et al. CDNA cloning and expression analysis of OfAP1 in Osmanthus fragrans [J]. Journal of Zhejiang A&F University, 2019, 36(4): 664 − 669.
[10] 向其柏, 刘玉莲. 中国桂花品种图志[M]. 浙江: 浙江科学技术出版社, 2008: 93 − 260.

XIANG Qibo, LIU Yulian. An Illustrated Monograph of the Sweet Osmanthus Variety in China [M]. Hangzhou: Zhejiang Science & Technology Press, 2008: 93 − 260.
[11] 朱诚, 曾广文. 桂花花衰老过程中的某些生理生化变化[J]. 园艺学报, 2000, 27(5): 356 − 360.

ZHU Cheng, ZENG Guangwen. Physiological and biochemical changes in flower senescence of Osmanthus fragrans Lour. [J]. Acta Horticulturae Sinica, 2000, 27(5): 356 − 360.
[12] ZHOU Yuan, CHENG Zhengwei, WANG Caiyun. Effects of exogenous ethylene and ethylene inhibitor on longevity and petal senescence of sweet osmanthus [J]. Acta Horticulturae, 2008, 768: 487 − 493.
[13] PENG Hsiaoping, LIN Teryun, WANG Ningning, et al. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia [J]. Plant Molecular Biology, 2005, 58(1): 15 − 25.
[14] ADAMS D O, YANG Shangfa. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene [J]. Plant Physiology, 1977, 60(6): 892 − 896.
[15] SORNCHAI P, van DOORN W G, IMSABAI W, et al. Dendrobium orchids carrying antisense ACC oxidase: small changes in flower morphology and a delay of bud abortion, flower senescence, and abscission of flowers [J]. Transgenic Research, 2020, 29(4): 429 − 442.
[16] LOVE J, BJORKLUND S, VAHALA J, et al. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5984 − 5989.
[17] 金乌云. 甜瓜ACO基因家族成员的鉴定及CmACO7和CmACO8基因的克隆[D]. 呼和浩特: 内蒙古大学, 2017.

JIN Wuyun. Identification of ACO Gene Family and Cloning of CmACO7 and CmACO8 Gene in Melon [D]. Hohhot: Inner Mongolia University, 2017.
[18] CALVO A P, NICOLÁS C, NICOLÁS G, et al. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds [J] Physiologia Plantarum, 2004, 120(4) : 623 − 630.
[19] PARK C H, ROH J, YOUN J, et al. Arabidopsis ACC oxidase-1 coordinated by multiple signals mediates ethylene biosynthesis and is involved in root development [J]. Molecules and Cells, 2018, 41(10): 923 − 932.
[20] CHEN Hongguo, ZENG Xiangling, YANG Jie, et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J/OL]. Horticulture Research, 2021, 8: 98[2022-11-28]. doi: 10.1038/s41438-021-00531-0.
[21] 冯志聪, 邹航, 果弘毅, 等. 旱柳、杞柳ACO基因家族的全基因组鉴定及表达分析[J]. 扬州大学学报(农业与生命科学版), 2022, 43(2): 10 − 19.

FENG Zhicong, ZOU Hang, GUO Hongyi, et al. Genome-wide identification and expression analysis of ACO gene family inSalix matsudana and Salix integra [J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2022, 43(2): 10 − 19.
[22] MARCHEL-BAUER A, DERBYSHIRE M K, GONZALES N R, et al. CDD: NCBI’s conserved domain database [J/OL]. Nucleic Acids Research, 2015, 43: D222-6[2022-11-28]. doi: 10.1093/nar/gku1221.
[23] PEI Jimin. Multiple protein sequence alignment [J]. Current Opinion in Structural Biology, 2008, 18(3): 382 − 386.
[24] VOORRIPS R E. MapChart: software for the graphical presentation of linkage maps and QTLs [J]. The Journal of Heredity, 2002, 93(1): 77 − 78.
[25] HE Zilong, ZHANG Huangkai, GAO Shenghan, et al. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees [J/OL]. Nucleic Acids Research, 2016, 44(W1): W236-41[2022-11-28]. doi: 10.1093/nar/gkw370.
[26] WANG Yupeng, TANG Haibao, DEBARRY J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity [J/OL]. Nucleic Acids Research, 2012, 40(7): e49[2022-11-28]. doi: 10.1093/nar/gkr1293.
[27] 郭旭, 张慧莹, 王铮, 等. 绿豆VrWOX基因家族鉴定及表达分析[J]. 生物工程学报, 2023, 39(2): 566 − 585.

GUO Xu, ZHANG Huiying, WANG Zheng, et al. Molecular characterization and transcriptional analysis of VrWOX genes in mungbean [Vigna radiate (L.) Wilczek] [J]. Chinese Journal of Biotechnology, 2023, 39(2): 566 − 585.
[28] HOUBEN M, van de POEL B. 1-aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene [J/OL]. Frontiers in Plant Science, 2019, 10: 695[2022-11-28]. doi: 10.3389/fpls.2009.00695.
[29] 朱丽颖, 杨军, 罗朝鹏, 等. 烟草ACO基因家族鉴定和二氯喹啉酸药害条件下的表达分析[J]. 烟草科技, 2022, 55(9): 10 − 18.

ZHU Liying, YANG Jun, LUO Chaopeng, et al. Identification of tobacco ACO gene family and its expression analysis under quinclorac phytotoxicity [J]. Tobacco Science &Technology, 2022, 55(9): 10 − 18.
[30] 杨利艳, 边璐, 史瑞翔, 等. 玉米ACO家族的全基因组鉴定与表达分析[J]. 湖南师范大学自然科学学报, 2022, 45(3): 109 − 116.

YANG Liyan, BIAN Lu, SHI Ruixiang, et al. Genome-wide identification and expression analysis of ACO family in maize [J]. Journal of Natural Science of Hunan Normal University, 2022, 45(3): 109 − 116.
[31] WEI Hengling, XUE Yujun, CHEN Pengyun, et al. Genome-wide identification and functional investigation of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes in cotton [J/OL]. Plants, 2021, 10(8): 1699[2022-11-28]. doi: 10.3390/plants10081699.
[32] HUDGINS J W, RALPHY S G, FRANCESCHI V R, et al. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells [J]. Planta, 2006, 224(4): 865 − 877.
[33] MOON J, KIM S Y, PARK C, et al. BES1 negatively regulates the expression of ACC oxidase 2 to control the endogenous level of ethylene in Arabidopsis thaliana [J/OL]. Plant Signaling & Behavior, 2020, 16(2): 1850625[2022-11-28]. doi: 10.1080/15592324.2020.1850625.
[34] GU Shinyuan, WANG Longchi, CHEUH Chiaomei, et al. CHITINASE LIKE1 regulates root development of dark-grown seedlings by modulating ethylene biosynthesis in Arabidopsis thaliana [J/OL]. Frontiers in Plant Science, 2019, 10: 600[2022-11-28]. doi: 10.3389/fpls.2019.00600.