[1] |
DUCEY M J, KNAPP R A. A stand density index for complex mixed species forests in the northeastern United States [J]. For Ecol Manage, 2010, 260(9): 1613 − 1622. |
[2] |
周晏平,雷泽勇,赵国军,等. 沙地樟子松不同树高-胸径模型比较分析[J]. 华南农业大学学报, 2019, 40(3): 75 − 81.
ZHOU Yanping, LEI Zeyong, ZHAO Guojun, et al. Comparing different height-diameter models of Pinus sylvestris var. mongolica in sandy land [J]. J South China Agric Univ, 2019, 40(3): 75 − 81. |
[3] |
樊伟,许崇华,崔珺,等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9): 2831 − 2839.
FAN Wei, XU Chonghua, CUI Jun, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area, China [J]. Chin J Appl Ecol, 2017, 28(9): 2831 − 2839. |
[4] |
徐庆华,杨进良,黄练忠,等. 次生常绿阔叶林群落林冠结构对林下植被的影响[J]. 浙江农林大学学报, 2019, 36(6): 1151 − 1157.
XU Qinghua, YANG Jinliang, HUANG Lianzhong, et al. Influence of canopy structure on understory vegetation of secondary evergreen broadleaf forest communities [J]. J Zhejiang A&F Univ, 2019, 36(6): 1151 − 1157. |
[5] |
PYA N, SCHMIDT M. Incorporating shape constraints in generalized additive modelling of the height-diameter relationship for Norway spruce [J]. For Ecosyst, 2016, 3(2): 112 − 125. |
[6] |
WANG Jing. Bayesian quantile regression for parametric nonlinear mixed effects models [J]. Stat Methods Appl, 2012, 21(3): 279 − 295. |
[7] |
GERACI M, BOTTAI M. Linear mixed quantile regression models: extensions and developments [J]. Lifetime Data Anal, 2007, 13(4): 497 − 512. |
[8] |
张兴皖,周石鹏. 人口老龄化与区域产业结构——基于分位数回归的实证研究[J]. 经济数学, 2019, 36(1): 24 − 31.
ZHANG Xingwan, ZHOU Shipeng. Population aging and regional industrial structure: empirical research based on quantile regression [J]. J Quant Econ, 2019, 36(1): 24 − 31. |
[9] |
田德超,李凤日,董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8): 41 − 46.
TIAN Dechao, LI Fengri, DONG Lihu. Potentila maximum crown width prediction model of Larix olgensis by quantile regression [J]. J Northeast For Univ, 2019, 47(8): 41 − 46. |
[10] |
BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models [J]. For Ecol Manage, 2014, 319: 62 − 66. |
[11] |
KOENKER R. Quantile Regression[M]. London: Cambridge University Press, 2005: 32 − 38. |
[12] |
AUSTIN P C, SCHULL M J. Quantile regression: a statistical tool for out-of-hospital research [J]. Acad Emergency Med, 2003, 10(7): 789 − 797. |
[13] |
MACHADO P J A F, MATA J. Counterfactual decomposition of changes in wage distributions using quantile regression [J]. J Appl Econ, 2010, 20(4): 445 − 465. |
[14] |
HAILE G A, NGUYEN A N. Determinants of academic attainment in the United States: a quantile regression analysis of test scores [J]. Educ Econ, 2008, 16(1): 29 − 57. |
[15] |
CADE B S, NOON B R, FLATHER C H. Quantile regression reveals hidden bias and uncertainty in habitat models [J]. Ecology, 2005, 86(3): 786 − 800. |
[16] |
ZANG Hao, LEI Xiangdong, ZENG Weisheng. Height-diameter equations for larch plantation in northern and northeastern China: a comparison of the mixed-effects, quantile regression and generalized additive models [J]. Forestry, 2016, 89(4): 434 − 445. |
[17] |
MEHTÄTALO L, GREGOIRE T G, BURKHART H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots [J]. Environmetrics, 2010, 19(5): 529 − 548. |
[18] |
DUCEY M J. The ratio of additive and traditional stand density indices [J]. Western J Appl For, 2009, 24(1): 5 − 10. |
[19] |
EVANS A M, GREGOIRE T G. A geographically variable model of hemlock woolly adelgid spread [J]. Biol Invasions, 2007, 9(4): 369 − 382. |
[20] |
ÖZÇELIK R, CAO Q V, TRINCADO G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey [J]. For Ecol Manage, 2018, 419/420: 240 − 248. |
[21] |
高慧淋,董利虎,李凤日. 基于分位数回归的长白落叶松人工林最大密度线[J]. 应用生态学报, 2016, 27(11): 3420 − 3426.
GAO Huilin, DONG Lihu, LI Fengri. Maximum density-size line for Larix olgensis, plantations based on quantile regression [J]. Chin J Appl Ecol, 2016, 27(11): 3420 − 3426. |
[22] |
高东启,邓华锋,王海宾,等. 基于哑变量的蒙古栎林分生长模型[J]. 东北林业大学学报, 2014, 21(1): 61 − 64.
GAO Dongqi, DENG Huafeng, WANG Haibin, et al. Dummy variables models in Quercus mongolica growth [J]. J Northeast For Univ, 2014, 21(1): 61 − 64. |
[23] |
杨英,冉啟香,陈新云,等. 哑变量在云杉地上生物量模型中的应用研究[J]. 林业资源管理, 2015, 12(6): 71 − 76.
YANG Ying, RAN Qixiang, CHEN Xinyun, et al. Research on dummy variable in aboveground biomass models for spruce [J]. For Resou Manage, 2015, 12(6): 71 − 76. |
[24] |
唐守正, 朗奎建, 李海奎. 统计和生物数学模型计算[M]. 北京: 科学出版社, 2009: 12 − 15. |
[25] |
郑冬梅,曾伟生. 用哑变量方法构建东北落叶松和栎类分段地上生物量模型[J]. 北京林业大学学报, 2013, 35(6): 32 − 35.
ZHENG Dongmei, ZENG Weisheng. Using dummy variable approach to construct segmented above ground biomass models for larch and oak in northeastern China [J]. J Beijing For Univ, 2013, 35(6): 32 − 35. |
[26] |
HUANG S, PRICE D, TITUS S J. Development of ecoregion-based height-diameter models for white spruce in boreal forests [J]. For Ecol Manage, 2000, 129(3): 139 − 141. |
[27] |
PENG Changhui, ZHANG Lianjun, LIU Jinxun. Developing and validating nonlinear height-diameter models for major tree species of Ontario’s boreal forests [J]. Northern J Appl For, 2001, 18(3): 87 − 94. |
[28] |
臧颢,雷相东,张会儒. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8 − 16.
ZANG Hao, LEI Xiangdong, ZHANG Huiru. Nonlinear mixed-effects height-diameter model of Pinus koraiensis [J]. J Beijing For Univ, 2016, 38(6): 8 − 16. |
[29] |
陈义刚,谢正生,张祥生,等. 粤北低山丘陵地区小红栲生长过程分析[J]. 华南农业大学学报, 1994, 14(2): 124 − 128.
CHEN Yigang, XIE Zhengsheng, ZHANG Xiangsheng, et al. Analysis of the growth process of Castanopsisc arlesii in north Guangdong mountain and hill areas [J]. J South China Agric Univ, 1994, 14(2): 124 − 128. |
[30] |
SANTOS F M, TERRA G, CHAER G M, et al. Modeling the height-diameter relationship and volume of young African mahoganies established in successional agro forestry systems in northeastern Brazil [J]. New For, 2019, 50(3): 389 − 407. |
[31] |
李忠国,孙晓梅,陈东升. 基于哑变量的日本落叶松生长模型研究[J]. 西北农林科技大学学报(自然科学版), 2011, 39(8): 69 − 74.
LI Zhongguo, SUN Xiaomei, CHEN Dongsheng, et al. Dummy variables model of increment of Larix kaempferi [J]. J Northwest A&F Univ Nat Sci Ed, 2011, 39(8): 69 − 74. |
[32] |
吕常笑,邓华锋,王秋鸟. 基于哑变量的马尾松生物量模型研究[J]. 河南农业大学学报, 2016, 12(3): 304 − 310.
LÜ Changxiao, DENG Huafeng, WANG Qiuniao, et al. Dummy variable models in Masson pine biomass [J]. J Henan Agric Univ, 2016, 12(3): 304 − 310. |
[33] |
SHARMA R P, VACEK Z, VACEK S, et al. Modelling individual tree height-diameter relationships for multi-layered and multi-species forests in central Europe [J]. Trees, 2019, 33(1): 103 − 119. |