[1] |
OHME-TAKAGI M, SHINSHI H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element [J]. Plant Cell, 1995, 7(2): 173 − 182. |
[2] |
NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice [J]. Plant Physiol, 2006, 140(2): 411 − 432. |
[3] |
JIN Xiaoyu, YIN Xiaofan, NDAYAMBAZA B, et al. Genome-wide identification and expression profiling of the ERF gene family in Medicago sativa L. under various abiotic stresses [J]. DNA Cell Biol, 2019, 38(10): 1056 − 1068. |
[4] |
CUI Licao, FENG Kewei, WANG Mengxing, et al. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon [J]. BMC Genomics, 2016, 17(1): 1 − 19. |
[5] |
CHEN Jing, ZHOU Yuanhang, ZHANG Qi, et al. Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate in Panax ginseng C. A. Meyer [J]. PLoS One, 2019, 15(3): e0226055. doi: 10.1371/journal.pone.0226055. |
[6] |
JOFUKU K D, DEN BOER B G, van MONTAGU M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. Plant Cell, 1994, 6(9): 1211 − 1225. |
[7] |
LIU Qiang, ZHANG Guiyou, CHEN Shouyi, et al. Structure and regulatory function of plant transcription factors [J]. Sci Bull, 2001, 46(4): 271 − 278. |
[8] |
SAKUMA Y, LIU Q, DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression [J]. Biochem Biophys Res Commun, 2002, 290(3): 998 − 1009. |
[9] |
HAO Dongyun, YAMASAKI K, SARAI A, et al. Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs [J]. Biochemistry, 2002, 41(13): 4202 − 4208. |
[10] |
覃利萍. 刚毛柽柳AP2/ERF转录因子ThCRF1响应盐胁迫的调控机理研究[D]. 乌鲁木齐: 新疆大学, 2018.
QIN Liping. Study on the Regulatory Mechanism of an AP2/ERF Transcriotion Factor, ThCRF1, in Response to Salt Stress in Tamarix hispida[D]. Urumqi: Xinjiang University, 2018. |
[11] |
CHENG Meichun, LIAO Poming, KUO Weiwen, et al. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals [J]. Plant Physiol, 2013, 162(3): 1566 − 1582. |
[12] |
KAGALE S, LINKS M G, ROZWADOWSKI K, et al. Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis [J]. Plant Physiol, 2010, 152(3): 1109 − 1134. |
[13] |
RIESTER L, KOSTERHOFMANN S, DOLL J, et al. Impact of alternatively polyadenylated isoforms of ETHYLENE RESPONSE FACTOR4 with activator and repressor function on senescence in Arabidopsis thaliana L. [J]. Genes, 2019, 10(2): 91. doi: 10.3390/genes10020091. |
[14] |
TIWARI S B, BELACHEW A, MA S F, et al. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors [J]. Plant J, 2012, 70(5): 855 − 865. |
[15] |
NOMURA Y, MATSUO N, BANNO H, et al. A domain containing the ESR motif in ENHANCER OF SHOOT REGENERATION 1 functions as a transactivation domain [J]. Plant Biotechnol, 2009, 26(4): 395 − 401. |
[16] |
HUANG Pinyao, ZHANG Jingsong, JIANG Beier, et al. NINJA-associated ERF19 negatively regulates Arabidopsis pattern triggered immunity [J]. J Exp Bot, 2019, 70(3): 1033 − 1047. |
[17] |
CATINOT J, HUANG Jingbo, HUANG Pinyao, et al. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate- and ethylene-responsive defence genes [J]. Plant Cell Environ, 2015, 38(12): 2721 − 2734. |
[18] |
YAO Yuan, HE Runjun, XIE Qiaoli, et al. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis [J]. New Phytol, 2017, 213(4): 1667 − 1681. |
[19] |
FROSCHEL C, IVEN T, WALPER E, et al. A gain-of-function screen reveals redundant ERF transcription factors providing opportunities for resistance breeding toward the vascular fungal pathogen Verticillium longisporum [J]. Mol Plant-microbe Interactions, 2019, 32(9): 1095 − 1109. |
[20] |
PARK C, GO Y, SUH M, et al. Cuticular wax biosynthesis is positively regulated by WRINKLED4, an AP2/ERF-type transcription factor, in Arabidopsis stems [J]. Plant J, 2016, 88(2): 257 − 270. |
[21] |
GASCH P, FUNDINGER M, MULLER J T, et al. Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-Motif to regulate hypoxia-responsive gene expression in Arabidopsis [J]. Plant Cell, 2015, 28(1): 160 − 180. |
[22] |
LIU Wei, LI Qiwei, WANG Yi, et al. Ethylene response factor AtERF72 negatively regulates Arabidopsis thaliana response to iron deficiency [J]. Biochem Biophys Res Commun, 2017, 491(3): 862 − 868. |
[23] |
LI Tong, JIANG Zhongyu, ZHANG Lichao, et al. Apple (Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription [J]. Plant J, 2016, 88(5): 735 − 748. |
[24] |
AN Jianping, ZHANG Xiaowei, XU Ruirui, et al. Apple MdERF4 negatively regulates salt tolerance by inhibiting MdERF3 transcription [J]. Plant Sci, 2018, 276: 181 − 188. |
[25] |
ZHAN Yihua, SUN Xiangyu, RONG Guozeng, et al. Identification of two transcription factors activating the expression of OsXIP in rice defence response [J]. BMC Biotechnol, 2017, 17: 26. doi: 10.1186/s12896-017-0344-7. |
[26] |
TAN Xiaoli, FAN Zhongqi, SHAN Wei, et al. Association of BrERF72 with methyl jasmonate-induced leaf senescence of Chinese flowering cabbage through activating JA biosynthesis-related genes [J]. Hortic Res, 2018, 5: 22. doi: 10.1038/s41438-018-0028-z. |
[27] |
THAGUN C, IMANISHI S, KUDO T, et al. Jasmonate-Responsive ERF transcription factors regulate steroidal glycoalkaloid biosynthesis in tomato [J]. Plant Cell Physiol, 2016, 57(5): 961 − 975. |
[28] |
LIU Anchi, CHENG Chiuping. Pathogen-induced ERF68 regulates hypersensitive cell death in tomato [J]. Mol Plant Pathol, 2017, 18(8): 1062 − 1074. |
[29] |
GAO Yuerong, LIU Yang, LIANG Yue, et al. Rosa hybrida RhERF1 and RhERF4 mediate ethylene- and auxin-regulated petal abscission by influencing pectin degradation [J]. Plant J, 2019, 99(6): 1159 − 1171. |
[30] |
MISHRA S, PHUKAN U J, TRIPATHI V, et al. PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco [J]. Plant Mol Biol, 2015, 89(1): 173 − 186. |
[31] |
YIN Dongmei, SUN Daoyang, HAN Zhuping, et al. PhERF2, an ethylene-responsive element binding factor, plays an essential role in waterlogging tolerance of petunia[J]. Hortic Res, 2019, 6: 83. doi: 10.1038/s41438-019-0165-z. |
[32] |
SUN Xiaoming, ZHANG Langlang, WONG D C J, et al. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance [J]. Plant J, 2019, 99(5): 988 − 1002. |
[33] |
QI Xinna, XIAO Yunyi, FAN Zhongqi, et al. A banana fruit transcriptional repressor MaERF10 interacts with MaJAZ3 to strengthen the repression of JA biosynthetic genes involved in MeJA-mediated cold tolerance [J]. Postharvest Biol Technol, 2016, 120: 222 − 231. |
[34] |
FAN Zhongqi, KUANG Jianfei, FU Changchun, et al. The banana transcriptional repressor MaDEAR1 negatively regulates cell wall-modifying genes involved in fruit ripening [J]. Front Plant Sci, 2016, 7: 1021. doi: 10.3389/fpls.2016.01021. |
[35] |
YIN Xueren, XIE Xiulan, XIA Xiaojian, et al. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening [J]. Plant J, 2016, 86(5): 403 − 412. |
[36] |
WANG Xiaobei, ZENG Wanfang, DING Yifeng, et al. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening [J]. Plant Sci, 2019, 283: 116 − 126. |
[37] |
FU Changchun, HAN Yanchao, QI Xiuye, et al. Papaya CpERF9 acts as a transcriptional repressor of cell-wall-modifying genes CpPME1/2 and CpPG5 involved in fruit ripening [J]. Plant Cell Rep, 2016, 35(11): 2341 − 2352. |
[38] |
ZHANG Jing, YIN Xueren, LI Heng, et al. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit [J]. J Exp Bot, 2020, 71(10): 3172 − 3184. |
[39] |
LI Weiyu, WANG Cheng, SHI Henghua, et al. Genome-wide analysis of ethylene-response factor family in adzuki bean and functional determination of VaERF3 under saline-alkaline stress [J]. Plant Physiol Biochem, 2020, 147: 215 − 222. |
[40] |
LI Jinjie, GUO Xiao, ZHANG Minghui, et al. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis [J]. Plant Sci, 2018, 270: 131 − 139. |
[41] |
ZHANG Wenhui, YANG Guiyan, MU Dan, et al. An ethylene-responsive factor BpERF11 negatively modulates salt and osmotic tolerance in Betula platyphylla [J]. Sci Rep, 2016, 6: 23085. doi: 10.1038/srep23085. |
[42] |
LIM C, LIM J, LEE S, et al. The pepper AP2 domain-containing transcription factor CaDRAT1 plays a negative role in response to dehydration stress [J]. Environ Exp Bot, 2019, 164: 170 − 180. |
[43] |
LI Zhenjun, TIAN Yongsheng, XU Jing, et al. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000 [J]. Plant Physiol Biochem, 2018, 132: 683 − 695. |
[44] |
YU Yang, KIM H S, MA Peiyong, et al. A novel ethylene-responsive factor IbERF4 from sweetpotato negatively regulates abiotic stress [J]. Plant Biotechnol Rep, 2020, 14(4): 397 − 406. |
[45] |
LI Shaojia, XIE Xiulan, LIU Shengchao, et al. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening [J]. Food Chem, 2019, 299: UNSP 125163. doi: 10.1016/j.foodchem.2019.125163. |
[46] |
KOYAMA T, NII H, MITSUDA N, et al. A regulatory cascade involving class II ETHYLENE RESPONSE FACTOR transcriptional repressors operates in the progression of leaf senescence [J]. Plant Physiol, 2013, 162(2): 991 − 1005. |
[47] |
KHASKHELI A J, AHMED W, MA C, et al. RhERF113 functions in ethylene-induced petal senescence by modulating cytokinin content in rose [J]. Plant Cell Physiol, 2018, 59(12): 2442 − 2451. |
[48] |
STEPANOVA A, ALONSO J M. Arabidopsis ethylene signaling pathway [J]. Sci STKE, 2005, 276: cm4. doi: 10.1126/stke.2762005cm4. |
[49] |
CHEN Weihan, LI Peifang, CHEN Mingkun, et al. FOREVER YOUNG FLOWER negatively regulates ethylene response DNA-binding factors by activating an ethylene-responsive factor to control Arabidopsis floral organ senescence and abscission [J]. Plant Physiol, 2015, 168(4): 1666 − 1683. |
[50] |
JU C, YOON G, SHEMANSKY J, et al. CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis [J]. Proc Natl Acad Sci USA, 2012, 109(47): 19486 − 19491. |
[51] |
AN Fengying, ZHAO Qiong, JI Yusi, et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis [J]. Plant Cell, 2010, 22(7): 2384 − 2401. |
[52] |
WU Dianyun, JI Jing, WANG Gang, et al. LchERF, a novel ethylene-responsive transcription factor from Lycium chinense, confers salt tolerance in transgenic tobacco [J]. Plant Cell Rep, 2014, 33(12): 2033 − 2045. |
[53] |
YANG Zhen, TIAN Lining, LATOSZEKGREEN M, et al. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses [J]. Plant Mol Biol, 2005, 58(4): 585 − 596. |
[54] |
PAN Yu, SEYMOUR G, LU Chungui, et al. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato [J]. Plant Cell Rep, 2012, 31(2): 349 − 360. |
[55] |
YU Yanwen, WANG Juan, LI Shenghui, et al. Ascorbic acid integrates the antagonistic modulation of ethylene and abscisic acid in the accumulation of reactive oxygen species [J]. Plant Physiol, 2019, 179(4): 1861 − 1875. |
[56] |
牟少亮, 申磊, 石星辰, 等. 水稻OsERF96应答病原菌的表达及启动子的功能分析[J]. 植物遗传资源学报, 2017, 18(1): 133 − 138.
MOU Shaoliang, SHEN Lei, SHI Xingchen, et al. Expression of OsERF96 response to pathogen and functional analysis of its promoter [J]. J Plant Genet Resour, 2017, 18(1): 133 − 138. |
[57] |
王庆灵, 刘文鑫, 赵嘉平. 山海关杨PdERF-18转录因子的表达特征分析[J]. 浙江农林大学学报, 2014, 31(5): 716 − 723.
WANG Qingling, LIU Wenxin, ZHAO Jiaping. Expression patterns for a PdERF-18 response to different stresses in Populus deltoides ‘Shanhaiguan’ [J]. J Zhejiang A&F Univ, 2014, 31(5): 716 − 723. |
[58] |
ASAI T, TENA G, PLOTNIKOVA J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity [J]. Nature, 2002, 415(6875): 977 − 983. |
[59] |
DAUTREAUX B, TOLEDANO M. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis [J]. Nat Rev Mol Cell Biol, 2007, 8(10): 813 − 824. |
[60] |
WANG Pengcheng, DU Yanyan, ZHAO Xiaoliang, et al. The MPK6-ERF6-ROS-responsive cis-acting element7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis [J]. Plant Physiol, 2013, 161(3): 1392 − 1408. |
[61] |
SCHMIDT R, MIEULET D, HUBBERTEN H, et al. SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice [J]. Plant Cell, 2013, 25(6): 2115 − 2131. |
[62] |
MATSUKURA S, MIZOI J, YOSHIDA T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes [J]. Mol Genet Genomics, 2010, 283(2): 185 − 196. |
[63] |
QIN Feng, KAKIMOTO M, SAKUMA Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. [J]. Plant J, 2007, 50(1): 54 − 69. |
[64] |
CHEN Xuemei. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science, 2004, 303(5666): 2022 − 2025. |
[65] |
CHENG Meichun, HSIEH Enjung, CHEN Junhung, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response [J]. Plant Physiol, 2012, 158(1): 363 − 375. |
[66] |
PUCCIARIELLO C, PERATA P. New insights into reactive oxygen species and nitric oxide signalling under low oxygen in plants [J]. Plant Cell Environ, 2017, 40(4): 473 − 482. |
[67] |
VICENTE J, MENDIONDO G M, MOVAHEDI M, et al. The Cys-Arg/N-end rule pathway is a general sensor of abiotic stress in flowering plants [J]. Curr Biol, 2017, 27(20): 3183 − 3190. |
[68] |
FENG Xu, FENG Peng, YU Huilin, et al. GsSnRK1 interplays with transcription factor GsERF7 from wild soybean to regulate soybean stress resistance [J]. Plant Cell Environ, 2020, 43(5): 1192 − 1211. |
[69] |
HAN Yanchao, KUANG Jianfei, CHEN Jianye, et al. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and Expansins during fruit ripening [J]. Plant Physiol, 2016, 171(2): 1070 − 1084. |
[70] |
LI Tong, TAN Dongmei, LIU Zhi, et al. Apple MdACS6 regulates ethylene biosynthesis during fruit development involving ethylene-responsive factor [J]. Plant Cell Physiol, 2015, 56(10): 1909 − 1917. |
[71] |
WU Lijun, CHEN Xiaoliang, REN Haiyun, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco [J]. Planta, 2007, 226(4): 815 − 825. |
[72] |
ZHOU Ming, GUO Shaogui, TIAN Shouwei, et al. Overexpression of the watermelon ethylene response factor ClERF069 in transgenic tomato resulted in delayed fruit ripening [J]. Hortic Plant J, 2020, 6(4): 247 − 256. |
[73] |
WANG Jiahui, GU Kaidi, HAN Pengliang, et al. Apple ethylene response factor MdERF11 confers resistance to fungal pathogen Botryosphaeria dothidea [J]. Plant Sci, 2020, 291: 110351. doi: 10.1016/j.plantsci.2019.110351. |
[74] |
YANG Chinying, HUANG Yichun, OU Shangling, et al. ERF73/HRE1 is involved in H2O2 production via hypoxia-inducible Rboh gene expression in hypoxia signaling [J]. Protoplasma, 2017, 254(4): 1705 − 1714. |
[75] |
SUN Xiaoming, ZHU Zhenfei, ZHANG Langlang, et al. Overexpression of ethylene response factors VaERF080 and VaERF087 from Vitis amurensis enhances cold tolerance in Arabidopsis [J]. Sci Hortic, 2019, 243: 320 − 326. |
[76] |
DONG Lidong, CHENG Yingxin, WU Junjiang, et al. Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean [J]. J Exp Bot, 2015, 66(9): 2635 − 2647. |
[77] |
ZHAO Yu, CHENG Saifeng, SONG Yaling, et al. The interaction between rice ERF3 and WOX11 promotes crown root development by regulating gene expression involved in cytokinin signaling [J]. Plant Cell, 2015, 27(9): 2469 − 2483. |