[1] CALVO M I. Three new homoisoflavanones from the bulbs of Ledebouria floribunda [J]. Fitoterapia, 2009, 80(7): 394−398. DOI: 10.1016/j.fitote.2009.05.010.
[2] KHIL L Y, HAN S S, KIM S G, et al. Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes [J]. Biochemical Pharmacology, 1999, 58(11): 1705−1712. DOI: 10.1016/S0006-2952(99)00275-0.
[3] YOU E J, KHIL L Y, KWAK W J, et al. Effects of brazilin on the production of fructose-2, 6-bisphosphate in rat hepatocytes [J]. Journal of Ethnopharmacology, 2005, 102(1): 53−57. DOI: 10.1016/j.jep.2005.05.020.
[4] WANG Huijun, FOWLER M I, MESSENGER D J, et al. Homoisoflavonoids are potent glucose transporter 2 (GLUT2) inhibitors: a potential mechanism for the glucose-lowering properties of Polygonatum odoratum [J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3137−3145. DOI: 10.1021/acs.jafc.8b00107.
[5] LIN Ligen, LIU Qianyu, YE Yang. Naturally occurring homoisoflavonoids and their pharmacological activities [J]. Planta Medica, 2014, 80(13): 1053−1066. DOI: 10.1055/s-0034-1383026.
[6] MOTTAGHIPISHEH J, STUPPNER H. A comprehensive review on chemotaxonomic and phytochemical aspects of homoisoflavonoids, as rare flavonoid derivatives[J]. International Journal of Molecular Sciences, 2021, 22(5): 2735. DOI: 10.3390/ijms22052735.
[7] PECIO Ł, PECIO S, MROCZEK T, et al. Spiro-flavonoids in nature: a critical review of structural diversity and bioactivity[J]. Molecules, 2023, 28(14): 5420. DOI: 10.3390/molecules28145420.
[8] LIU Jianbo, WANG Hongqing, SHAO Hongjie, et al. Isolation and characterization of dihydrohomoisoflavonoids from Portulaca oleracea L.[J]. Phytochemistry, 2024, 222: 114071. DOI: 10.1016/j.phytochem.2024.114071.
[9] PU Hangyi, CAO Yu, JIANG Xilang, et al. Steroidal saponins and homoisoflavonoids from the fibrous roots of ophiopogon japonicus and their anti-pulmonary fibrosis activities [J]. Natural Product Research, 2025, 39(14): 4055−4065. DOI: 10.1080/14786419.2024.2331044.
[10] SHI Yan, SI Dun, CHEN Donghong, et al. Bioactive compounds from Polygonatum genus as anti-diabetic agents with future perspectives[J]. Food Chemistry, 2023, 408: 135183. DOI: 10.1016/j.foodchem.2022.135183.
[11] 任洪民, 邓亚羚, 张金莲, 等. 药用黄精炮制的历史沿革、化学成分及药理作用研究进展[J]. 中国中药杂志, 2020, 45(17): 4163−4182. REN Hongmin, DENG Yaling, ZHANG Jinlian, et al. Research processing history evolution, chemical components and pharmacological effects of polygonati rhizome [J]. China Journal of Chinese Materia Medica, 2020, 45(17): 4163−4182. DOI: 10.19540/j.cnki.cjcmm.20200522.601.

REN Hongmin, DENG Yaling, ZHANG Jinlian, et al. Research processing history evolution, chemical components and pharmacological effects of polygonati rhizome [J]. China Journal of Chinese Materia Medica, 2020, 45(17): 4163−4182.
[12] SAITOH T, SAKASHITA S, NAKATA H, et al. 3-Benzylchroman derivatives related to brazilin from Sappan Lignum [J]. Chemical and Pharmaceutical Bulletin, 1986, 34(6): 2506−2511. DOI: 10.1248/cpb.34.2506.
[13] LIN Ligen, XIE Hua, LI Honglin, et al. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening [J]. Journal of Medicinal Chemistry, 2008, 51(15): 4419−4429. DOI: 10.1021/jm701501x.
[14] MAXWELL C A, HARRISON M J, DIXON R A. Molecular characterization and expression of alfalfa isoliquiritigenin 2'-O-methyltransferase, an enzyme specifically involved in the biosynthesis of an inducer of Rhizobium meliloti nodulation genes [J]. Plant Journal, 1993, 4(6): 971−981. DOI: 10.1046/j.1365-313X.1993.04060971.x.
[15] MOLINA-HIDALGO F J, VAZQUEZ-VILAR M, D’ANDREA L, et al. Engineering metabolism in Nicotiana species: a promising future [J]. Trends in Biotechnology, 2021, 39(9): 901−913. DOI: 10.1016/j.tibtech.2020.11.012.
[16] LI Jianhua, MUTANDA I, WANG Kaibo, et al. Chloroplastic metabolic engineering coupled with isoprenoid pool enhancement for committed taxanes biosynthesis in Nicotiana benthamiana[J]. Nature Communications, 2019, 10(1): 4850. DOI: 10.1038/s41467-019-12879-y.
[17] ZHU Qinlong, ZENG Dongchang, YU Suize, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm [J]. Molecular Plant, 2018, 11(12): 1440−1448. DOI: 10.1016/j.molp.2018.09.007.
[18] BREITEL D, BRETT P, ALSEEKH S, et al. Metabolic engineering of tomato fruit enriched in L-DOPA [J]. Metabolic Engineering, 2021, 65: 185−196. DOI: 10.1016/j.ymben.2020.11.011.
[19] ZHU Guangtao, WANG Shouchuang, HUANG Zejun, et al. Rewiring of the fruit metabolome in tomato breeding [J]. Cell, 2018, 172(1/2): 249−261. DOI: 10.1016/j.cell.2017.12.019.
[20] TIEMAN D, ZHU Guangtao, RESENDE M F R Jr, et al. A chemical genetic roadmap to improved tomato flavor [J]. Science, 2017, 355(6323): 391−394. DOI: 10.1126/science.aal1556.
[21] 张博, 马永硕, 尚轶, 等. 植物合成生物学研究进展[J]. 合成生物学, 2020(2): 121−140. ZHANG Bo, MA Yongshuo, SHANG Yi, et al. Recent advances in plant synthetic biology [J]. Synthetic Biology Journal, 2020(2): 121−140. DOI: 10.12211/2096-8280.2020-016.

ZHANG Bo, MA Yongshuo, SHANG Yi, et al. Recent advances in plant synthetic biology [J]. Synthetic Biology Journal, 2020(2): 121−140.
[22] 王莎, 杜致辉, 陈之林. 基于GC-MS代谢组学技术2种香型美花石斛代谢物的对比分析[J]. 分子植物育种, 2021, 19(9): 3081−3089. WANG Sha, DU Zhihui, CHEN Zhilin, et al. Comparison of metabolites of two aromatic Dendrobium loddigesii species based on GC-MS metabonomics [J]. Molecular Plant Breeding, 2021, 19(9): 3081−3089. DOI: 10.13271/j.mpb.019.003081.

WANG Sha, DU Zhihui, CHEN Zhilin, et al. Comparison of metabolites of two aromatic Dendrobium loddigesii species based on GC-MS metabonomics [J]. Molecular Plant Breeding, 2021, 19(9): 3081−3089.
[23] CONSTANTINESCU T, MIHIS A G. Two important anticancer mechanisms of natural and synthetic chalcones[J]. International Journal of Molecular Sciences, 2022, 23(19): 11595. DOI: 10.3390/ijms231911595.
[24] ZHOU Changxin, ZOU Li, MO Jianxia, et al. Homoisoflavonoids from Ophiopogon japonicus [J]. Helvetica Chimica Acta, 2013, 96(7): 1397−1405. DOI: 10.1002/hlca.201200493.
[25] NAVES E R, de ÁVILA SILVA L, SULPICE R, et al. Capsaicinoids: pungency beyond Capsicum [J]. Trends in Plant Science, 2019, 24(2): 109−120. DOI: 10.1016/j.tplants.2018.11.001.
[26] SOLTANMOHAMMADI B, JALALI-JAVARAN M, RAJABI-MEMARI H, et al. Cloning, transformation and expression of proinsulin gene in Tomato (Lycopersicum esculentum Mill.) [J]. Jundishapur Journal of Natural Pharmaceutical Products, 2014, 9(1): 9−15. DOI: 10.17795/jjnpp-7779.
[27] 谭琳, 康由发, 马兵刚, 等. 芪合酶基因转化番茄产生白藜芦醇的研究[J]. 生命科学研究, 2003, 7(3): 262−266. TAN Lin, KANG Youfa, MA Binggang, et al. Resveratrol production of tomato transformed with a Vitis stilbene synthase gene [J]. Life Science Research, 2003, 7(3): 262−266. DOI: 10.16605/j.cnki.1007-7847.2003.03.015.

TAN Lin, KANG Youfa, MA Binggang, et al. Resveratrol production of tomato transformed with a Vitis stilbene synthase gene [J]. Life Science Research, 2003, 7(3): 262−266.
[28] JIAN Wei, CAO Haohao, YUAN Shu, et al. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in toma to fruits[J]. Horticulture Research, 2019, 6: 22. DOI: 10.1038/s41438-018-0098-y.