[1] NⅡNEMETS U. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants:past stress history, stress interactions, tolerance and acclimation[J]. For Ecol Manage, 2010, 260:1623-1639. doi:  10.1016/j.foreco.2010.07.054
[2] CRAMER G R, URANO K, DELROT S, et al. Effects of abiotic stress on plants:a systems biology perspective[J]. BMC Plant Biol, 2011, 11:163. doi: 10.1186/1471-2229-11-163.
[3] LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs[J]. Trends Plant Sci, 2010, 15(3):154-166. doi:  10.1016/j.tplants.2009.12.006
[4] BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions:talking trees in the genomics era[J]. Science, 2006, 311:812-815. doi:  10.1126/science.1118446
[5] 左照江, 张汝民, 高岩. 植物间挥发物信号的研究进展[J]. 植物学报, 2009, 44(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT200902018.htm

ZUO Zhaojiang, ZHANG Rumin, GAO Yan. Research advances in volatile signals among plants[J]. Chin Bull Bot, 2009, 44(2):245-252. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT200902018.htm
[6] 林富平, 周帅, 马楠, 等. 4个桂花品种叶片挥发物成分及其对空气微生物的影响[J]. 浙江农林大学学报, 2013, 30(1):15-21. http://zlxb.zafu.edu.cn/CN/abstract/abstract710.shtml

LIN Fuping, ZHOU Shuai, MA Nan, et al. Volatile organic compounds in leaves of Osmanthus fragrans and their effect on airborne microorganisms[J]. J Zhejiang A & F Univ, 2013, 30(1):15-21. http://zlxb.zafu.edu.cn/CN/abstract/abstract710.shtml
[7] 孔垂华, 徐涛, 胡飞, 等. 环境胁迫下植物化感作用及其诱导机制[J]. 生态学报, 2000, 20(5):849-854. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200005021.htm

KONG Chuihua, XU Tao, HU Fei, et al. Allelopathy under environmental stress and its induced mechanism[J]. Acta Ecol Sin, 2000, 20(5):849-854. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200005021.htm
[8] THEIS N, LERDAU M. The evolution of function in plant secondary metabolites[J]. Int J Plant Sci, 2003, 164:93-102. doi:  10.1086/374190
[9] ARIMURA G, OZAWA R, KUGIMIYA S, et al. Herbivore-induced defense response in a model legume:two-spoted spider mites, tetranychus urticae, induce emission of (E)-β-ocimene and transcript accumulation of (E)-β-ocimene synthas in Lotus japonicus[J]. Plant Physiol, 2004, 135:1976-1983. doi:  10.1104/pp.104.042929
[10] TUMLINSON J H, LAIR C G. Biosynthesis of fatty acid amide elicitors of plant volatiles by insect herbivores[J]. Arch Insect Biochem Physiol, 2005, 58(2):54-68. doi:  10.1002/(ISSN)1520-6327
[11] IBRAHIM M A, MÄENPÄÄM, HASSINEN V, et al. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula[J]. J Exp Bot, 2010, 61:1583-1595. doi:  10.1093/jxb/erq034
[12] HARTIKANINEN K, NERG A, KIVIMÄENPÄÄM, et al. Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature[J]. Tree Physiol, 2009, 29:1163-1173. doi:  10.1093/treephys/tpp033
[13] KARL T, CURTIS A J, ROSENSTIEL T N, et al. Transient releases of acetaldehyde from tree leaves-products of a pyruvate overflow mechanism[J]. Plant Cell Environ, 2002, 25:1121-1131. doi:  10.1046/j.1365-3040.2002.00889.x
[14] STAUDT M, ENNAJAH A, MOUILLOT F, et al. Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought[J]. Can J For Res, 2008, 38:2965-2975. doi:  10.1139/X08-134
[15] LAVOIR A V, STAUDT M, SCHNITZLER J P, et al. Drought reduced monoterpene emissions from Quercus ilex trees:results from a throughfall displacement experiment within a forest ecosystem[J]. Biogeosci Discuss, 2009, 6:863-893 doi:  10.5194/bgd-6-863-2009
[16] BLANCH J S, PENUELAS J, LLUSIA J. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex[J]. Physiol Plant, 2007, 131(2):211-225.
[17] 王珲, 高慧媛, 张振秋, 等. 中药迷迭香化学成分的分离与鉴定[J]. 中国现代中药, 2011, 13(1):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201101009.htm

WANG Hui, GAO Huiyuan, ZHANG Zhenqiu, et al. Isolation and identification of chemical constituents from Rosmarinus officinalis L.[J]. Modern Chin Med, 2011, 13(1):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201101009.htm
[18] 袁干军, 李沛波, 杨慧. 迷迭香中鼠尾草酸的抗MRSA活性研究[J]. 中国现代应用药学, 2012, 29(7):571-574. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201207002.htm

YUAN Ganjun, LI Peibo, YANG Hui. Anti-MRSA activity of carnosic acid in rosemary[J]. Chin J Mod Appl Pharm, 2011, 29(7):571-574. http://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201207002.htm
[19] 黄宏妙, 郭占京, 卢汝梅, 等. 迷迭香挥发油提取工艺优化及其化学成分分析[J]. 湖北农业科学, 2012, 51(11):2321-2324. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201211052.htm

HUANG Hongmiao, GUO Zhanjing, LU Rumei, et al. Optimization of extraction technology of volatile oil from rosemary and analysis on the chemical constituents of volatile oil[J]. Hubei Agric Sci, 2012, 51(11):2321-2324. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201211052.htm
[20] HATANAKA A. The biogeneration of green odour by green leaves[J]. Phytochemistry, 1993, 34(5):1201-1218. doi:  10.1016/0031-9422(91)80003-J
[21] GAO Yan, JIN Youju, LI Haidong, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species[J]. J Integrat Plant Biol, 2005, 47(4):499-507. doi:  10.1111/jipb.2005.47.issue-4
[22] LAOTHAWORNKITKUL J, PAUL N D, VICKERS C E, et al. Isoprene emissions influence herbivore feeding decisions[J]. Plant Cell Environ, 2008, 31:1410-1415. doi:  10.1111/pce.2008.31.issue-10
[23] 周帅, 林富平, 王玉魁, 等. 樟树幼苗机械损伤叶片对挥发性有机化合物及叶绿素荧光参数的影响[J]. 植物生态学报, 2012, 36(7):671-680. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201207011.htm

ZHOU Shuai, LIN Fuping, WANG Yukui, et al. Effects of mechanical damage of leaves on volatile organic compounds and chlorophyll fluorescence parameters in seedlings of Cinnamomum camphora[J]. Chin J Plant Ecol, 2012, 36(7):671-680. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201207011.htm
[24] VAAHTERA L, BROSCHE M. More than the sum of its parts-how to achieve a specific transcriptional response to abiotic stress[J]. Plant Sci, 2011, 180(3):421-430. doi:  10.1016/j.plantsci.2010.11.009
[25] BRUCE T J A, WADHAMS L J, WOODCOCK C M. Insect host location:a volatile situation[J]. Trends Plant Sci, 2005, 10(6):269-274. doi:  10.1016/j.tplants.2005.04.003
[26] 左照江, 张汝民, 王勇, 等. 冷蒿挥发性有机化合物主要成分分析及其地上部分结构研究[J]. 植物生态学报, 2010, 34(4):462-468. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201004013.htm

ZUO Zhaojiang, ZHANG Rumin, WANG Yong, et al. Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigida[J]. Chin J Plant Ecol, 2010, 34(4):462-468. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201004013.htm
[27] NⅡNEMETS U, LORETO F, REICHSTEIN M. Physiological and physicochemical controls on foliar volatile organic compound emissions[J]. Trends Plant Sci, 2004, 9(4):180-186. doi:  10.1016/j.tplants.2004.02.006
[28] BRILLI F, BARTA C, FORTUNATI A, et al. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings[J]. New Phytol, 2007, 175:244-254. doi:  10.1111/nph.2007.175.issue-2
[29] SIMPRAGA M, VERBEECK H, DEMARCKE M, et al. Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L.[J]. Atmospheric Environ, 2011, 45:5254-5259. doi:  10.1016/j.atmosenv.2011.06.075
[30] DELFINE S, LORETO F, PINELLI P, et al. Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress[J]. Agric Ecosyst Environ, 2005, 106:243-252. doi:  10.1016/j.agee.2004.10.012