[1] |
苗庆选, 刘春晓, 怀婷婷, 等. 我国核桃研究文献的统计分析[J]. 安徽农业科学, 2020, 48(6): 223 − 226.
MIAO Qingxuan, LIU Chunxiao, HUAI Tingting, et al. Statistical analysis of walnut research literatures in China [J]. Journal of Anhui Agricultural Sciences, 2020, 48(6): 223 − 226. |
[2] |
牛选明. 干旱胁迫对薄皮核桃果实品质的影响[J]. 山东林业科技, 2018, 48(5): 61 − 63.
NIU Xuanming. Effects of drought stress on fruit quality of thin-skinned walnut [J]. Journal of Shandong Forestry Science and Technology, 2018, 48(5): 61 − 63. |
[3] |
XU Zhenzhu, JIANG Yanling, ZHOU Guangsheng. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants [J/OL]. Frontiers in Plant Science, 2015, 6 : 701[2024-03-29]. doi: 10.3389/fpls.2015.00701. |
[4] |
de la FUENTE J L, ZUNZUNEGUI M, BARRADAS M C D. Physiological responses to water stress and stress memory in Argania spinosa [J/OL]. Plant Stress, 2023, 7 : 100133[2024-03-29]. doi: 10.1016/j.stress.2023.100133. |
[5] |
REINECKE D M, WICKRAMARATHNA A D, OZGA J A, et al. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea [J]. Plant Physiology, 2013, 163(2): 929 − 945. |
[6] |
XUE Dawei, ZHANG Xiaoqin, LU Xueli, et al. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance [J/OL]. Frontiers in Plant Science, 2017, 8 : 621[2024-03-29]. doi: 10.3389/fpls.2017.00621. |
[7] |
KANG H G, KIM J, KIM B, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana [J]. Plant Science, 2011, 180(4): 634 − 641. |
[8] |
ZAWASKI C, BUSOV V B. Roles of gibberellin catabolism and signaling in growth and Physiological response to drought and short-day photoperiods in Populus trees [J/OL]. PLoS One, 2014, 9 (1): e86217[2024-03-29]. doi: 10.1371/journal.pone.0086217. |
[9] |
何红红. 葡萄赤霉素氧化酶基因GA2ox、GA3ox和GA20ox家族的鉴定与GA2ox7的耐盐性功能分析[D]. 兰州: 甘肃农业大学, 2021.
HE Honghong. Identification of Grape Gibberellin Oxidase Genes GA2ox, GA3ox and GA20ox Family and Analysis of Salt Tolerance Function of GA2ox7 [D]. Lanzhou: Gansu Agricultural University, 2021. |
[10] |
DRIVER J A, KUNIYUKI A H. In Vitro Propagation of Paradox Walnut Rootstock [J]. HortScience, 1984, 19(4): 507 − 509. |
[11] |
魏广利. 核桃赤霉素2-ODDs家族氧化酶基因的克隆与功能分析[D]. 杭州: 浙江农林大学, 2021.
WEI Guangli. Cloning and Functional Analysis of Oxidase Gene of Gibberellin 2-ODDs Family in Walnut [D]. Hangzhou: Zhejiang A&F University, 2021. |
[12] |
高俊山, 蔡永萍. 植物生理学实验指导[M]. 北京: 中国农业大学出版社, 2018.
GAO Junshan, CAI Yongping. Experimental Guidance of Plant Physiology [M]. Beijing: China Agricultural University Press, 2018. |
[13] |
魏广利, 梁璧, 张佳琦, 等. 山核桃赤霉素氧化酶基因CcGA3ox的克隆和功能分析[J]. 果树学报, 2019, 38(1): 13 − 28.
WEI Guangli, LIANG Bi, ZHANG Jiaqi, et al. Cloning and functional analysis of CcGA3ox gene from hickory (Carya cathayensis) [J]. Journal of Fruit Science, 2019, 38(1): 13 − 28. |
[14] |
CASSON S A, HETHERINGTON A M. Environmental regulation of stomatal development [J]. Current Opinion in Plant Biology, 2010, 13(1): 90 − 95. |
[15] |
LI Shuang, LIU Junming, LIU Hao, et al. Role of hydraulic signal and ABA in decrease of leaf stomatal and mesophyll conductance in soil drought-stressed tomato [J/OL]. Frontiers in Plant Science, 2021, 12 : 653186[2024-03-29]. doi: 10.3389/fpls.2021.653186. |
[16] |
KERCHEV P I, van BREUSEGEM F. Improving oxidative stress resilience in plants [J]. The Plant Journal, 2022, 109(2): 359 − 372. |
[17] |
DMITRIEVA V A, TYUTEREVA E, VOITSEKHOVSKAJA O. Singlet oxygen in plants: generation, detection, and signaling roles [J/OL]. International Journal of Molecular Sciences, 2020, 21 (9): 3237[2024-03-29]. doi: 10.3390/ijms21093237. |
[18] |
郝小花, 胡爽, 赵丹, 等. OsGA3ox通过合成不同活性GA调控水稻育性及株高[J]. 遗传, 2019, 45(9): 845 − 855.
HAO Xiaohua, HU Shuang, ZHAO Dan, et al. OsGA3ox genes regulate rice fertility and plant height by synthesizing diverse active GA [J]. Hereditas, 2019, 45(9): 845 − 855. |
[19] |
SPERRY J S, VENTURAS M D, ANDEREGG W R L , et al. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost [J]. Plant Cell & Environment, 2017, 40(6): 816 − 830. |
[20] |
刘德政, 卢山, 高珅奥, 等. 大田和旱棚环境下小麦旗叶气孔性状变异及其与光合参数的关系[J]. 麦类作物学报, 2024, 44(3): 360 − 369.
LU Dezheng, LU Shan, GAO Shen’ao, et al. Variations of flag leaf and stomatal traits of wheat in field and drought shed environment [J]. Journal of Triticeae Crops, 2024, 44(3): 360 − 369. |
[21] |
王质璞, 李卓蓉, 罗志斌, 等. PagAPY1基因调控银腺杨耐旱性的作用机制研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 105 − 112.
WANG Zhipu, LI Zhuorong, LUO Zhibin, et al. Mechanisms of PagAPY1 in regulating drought tolerance in Populus alba×P. glandulosa [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(6): 105 − 112. |
[22] |
何小三, 周文才, 邱凤英, 等. 不同油茶品种对干旱胁迫的响应及其抗旱性综合评价[J]. 中南林业科技大学学报, 2019, 43(9): 1 − 14.
HE Xiaosan, ZHOU Wencai, QIU Fengying, et al. Responses of different Camellia oleifera varieties to drought stress and the comprehensive evaluation of their drought resistance [J]. Journal of Central South University of Forestry & Technology, 2019, 43(9): 1 − 14. |
[23] |
冯蕊, 周琪, 吴令上, 等. PEG 6000模拟干旱胁迫对铁皮石斛幼苗生理和叶绿素荧光特性的影响[J]. 浙江农林大学学报, 2024, 41(1): 132 − 144.
FENG Rui, ZHOU Qi, WU Lingshang, et al. Effects of PEG 6000 simulated drought stress on physiological and chlorophyll fluorescence characteristics of Dendrobium candidum seedlings [J]. Journal of Zhejiang A&F University, 2024, 41(1): 132 − 144. |
[24] |
董斌, 蓝来娇, 黄永芳, 等. 干旱胁迫对油茶叶片叶绿素含量和叶绿素荧光参数的影响[J]. 经济林研究, 2020, 38(3): 16 − 25.
DONG Bin, LAN Laijiao, HUANG Yongfang, et al. Effects of drought stress on photosynthetic pigments and chlorophyll fluorescence characteristics in leaves of Camellia oleifera [J]. Non-wood Forest Research, 2020, 38(3): 16 − 25. |
[25] |
MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave? [J]. Trends in Plant Science, 2011, 16(6): 300 − 309. |
[26] |
张清航, 张永涛. 植物体内丙二醛(MDA)含量对干旱的响应[J]. 林业勘查设计, 2019(1): 110 − 112.
ZHANG Qinghang, ZHANG Yongtao. Study on response to drought stress of MDA content in plants [J]. Forestry Investigation Design, 2019(1): 110 − 112. |
[27] |
吴建明, 陈荣发, 黄杏, 等. 高等植物赤霉素生物合成关键组分GA20-oxidase氧化酶基因的研究进展[J]. 生物技术通报, 2016, 32(7): 1 − 12.
WU Jianming, CHEN Rongfa, HUANG Xing, et al. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant [J]. Biotechnology Bulletin, 2016, 32(7): 1 − 12. |
[28] |
CHENG Jun, ZHANG Mengmeng, TAN Bin, et al. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach [J]. Plant Biotechnology Journal, 2019, 17(9): 1723 − 1735. |