[1] LOVELL R D, JARVIS S C, BARDGETT R D. Soil microbial biomass and activity in long-term grassland:effects of management changes[J]. Soil Biol Biochem, 1995,27:969-975.
[2] BÖHME L,LANGER U,BÖHME F. Microbial biomass,enzyme activities and microbial community structure in two European long-term field experiments[J]. Agric Ecosyst Environ,2005,109:141-152.
[3] BRUSSAARD L,DE RUITER P C,BROWN G G. Soil biodiversity for agricultural sustainability[J]. Agric,Ecosyst Environ,2007,121(3):233-244.
[4] LEININGER S,URICH T,SCHLOTER M,et al. Archaea predominate among ammonia oxidizing prokaryotes in soils[J]. Nature,2006,442:806-809.
[5] PROSSER J I,NICOL G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environ Microbiol,2008,10:2931-2941.
[6] KOWALCHUK G A,STEPHEN J R. Ammonia-oxidizing bacteria:a model for molecular microbial ecology[J]. Ann Rev Microbiol,2001,55(1):485-529.
[7] WESSÉN E,HALLIN S. Abundance of archaeal and bacterial ammonia oxidizers-possible bioindicator for soil monitoring[J]. Ecol Indic,2011,11:1696-1698.
[8] OKANO Y, HRISTOVA K R. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil[J]. Appl Environ Microbiol,2004,70:1008-1016.
[9] JENSEN K,SLOTH N P. Estimation of nitrification and denitrification from microp rofiles of oxygen and nitrate in model sediment systems[J]. Appl Environ Microbiol,1994,60:2094-2100.
[10] FRIJLINK M J,ABEE T,LAANBROCK H J. The bioenergetics of ammonia and hydroxylamine oxidation in nitrosomonas europaca by altering pH to affect NH3 availability[J]. Appl Environ Microbiol,1997,63:4588-4592.
[11] BURTON S,PROSSER J I. Autotrophic ammonia oxidation at low pH through urea hydrolysis[J]. Soil Biochem, 1998,30:509-515.
[12] FIERER N,CARNEY K M,HORNER-DEVINE M C,et al. The biogeography of ammonia-oxidizing bacterial communities in soil[J]. Microbial Ecol,2009,58:435-445.
[13] SUNDBERG C,STENDAHL J S K,TONDERSKI K. Over land flow systems for treatment of landfill leachates:Potential nitrification and structure of the ammonia-oxidising bacterial community during a growing season[J]. Soil Biol Biochem,2007,39:127-138.
[14] 贺纪正,张丽梅. 氨氧化微生物生态学与氮循环研究进展[J]. 生态学报,2009,29(1):406-415.

HE Jizheng,ZHANG Limei. Advances in ammonia-oxidizing microorganisms and global nitrogen cycle[J]. Acta Ecol Sin,2009,29(1):406-415.
[15] ZHANG Pingjiu,ZHENG Jufeng,PAN Genxing et al. Changes in microbial community structure and function with in particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake Region,China[J]. Coll Surf B Bioint,2007,58:264-270.
[16] CHU H Y,FUJII T,MORIMOTO S,et al. Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. Appl Environ Microbiol,2007,73(2):485-491.
[17] COLLOFF M J,WAKELIN S A,GOMEZ D,et al. Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management[J]. Soil Biol Biochem,2008,40(7):1637-1645.
[18] HE Jizheng,SHEN Jupei, ZHANG Limei,et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long term fertilization practices[J]. Environ Microbiol,2007,9:2364-2374.
[19] 姜培坤,周国模,徐秋芳. 雷竹高效栽培措施对土壤碳库的影响[J]. 林业科学,2002,38(6):6-11.

JIANG Peikun,ZHOU Guomo,XU Qiufang. Effect of intensive cultivation on the carbon pool of soil in Phyllostachys praecox stands[J]. Sci Silv Sin,2002,38(6):6-11.
[20] KUNTAL M H,ANAND S,MISHRA B,et al. Impact of long-term application of fertilizer,manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol[J]. Geoderma,2008,148:173-179.
[21] 刘卜榕. 亚热带4种主要森林土壤氨氧化微生物群落结构及多样性研究[D]. 临安:浙江农林大学,2012.

LIU Burong. Community and Diversity of Ammonia-oxidizing Microbes in Four Major Types of Forest in Subtropics of China[D]. Lin'an:Zhejiang A & F University,2012.
[22] 田甜. 毛竹林土壤氨氧化微生物功能基因多样性[D]. 临安:浙江农林大学,2011.

TIAN Tian. Functional Gene Diversity of Ammonia-oxidizing Microbes of Soil in Phyllostachys pubescens[D]. Lin'an:Zhejiang A & F University,2011.
[23] 宋亚娜,林智敏,林捷. 不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成[J]. 中国生态农业学报, 2009,17(6):1211-1215.

SONG Yana,LIN Zhimin,LIN Jie. Composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities in paddy soils of different rice cultivars[J]. Chin J Eco-Agric,2009,17(6):1211-1215.
[24] MAGURRAN A E. Ecological Diversity and Its Measurement[M]. Princeton:Princeton University Press,1988.
[25] SHEN Jupei,ZHANG Limei,ZHU Yongguan,et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environ Microbiol,2008,10(6):1601-1611.
[26] VALLAEYS T,TOPP E,MUYZER G,et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs[J]. FEMS Microbiol Ecol,1997,24(3):279-285.
[27] GIRVAN M S,BULLIMORE J,PRETTY J N,et al. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils[J]. Appl Environ Microbiol,2003,69:1800-1809.
[28] HAYDEN H L,DRAKE J,IMHOF M,et al. The abundance of nitrogen cycle genes amoA and nifH depends on land-uses and soil types in South-Eastern Australia[J]. Soil Biol Biochem,2010,42:1774-1783.