[1] 吕厚远, 贾继伟, 王伟铭, 等. "植硅体"含义和禾本科植硅体的分类[J].微体古生物学报, 2002, 19(4):389-396.

LÜ Houyuan, JIA Jiwei, WANG Weiming, et al. On the meaning of phytolith and its classification in gramineac[J]. Acta Micropalaeontol Sin, 2002, 19(4):389-396.
[2] PARR J, SULLIVAN L, CHEN Bihua, et al. Carbon bio-sequestration within the phytoliths of economic bamboo species[J]. Global Change Biol, 2010, 16(10):2661-2667.
[3] PIPERNO D R. Phytolith Analysis:An Archaeological and Geological Perspective[M]. San Diego:Academic Press, 1988.
[4] 吕后东, 李荣华, 徐庆梅.植物硅酸体分析与中草药鉴定[J].时珍国药研究, 1998, 8(5):28-30.

LÜ Houdong, LI Ronghua, XU Qingmei. Analysis of opal phytoliths and identification of Chinese herbal medicine[J]. Shizhen J Tradit Chin Med Res, 1998, 8(5):28-30.
[5] ALEXANDRE A, MEUNIER J D, COLIN F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes[J]. Geochim Cosmochim Acta, 1997, 61(3):677-682.
[6] LI Zhenji, LIN Peng, HE Jianyuan, et al. Silicon's organic pool and biological cycle in moso bamboo community of Wuyishan Biosphere Reserve[J]. J Zhejiang Univ Sci B, 2006, 7(11):849-857.
[7] 黄张婷, 姜培坤, 宋照亮, 等.不同竹龄雷竹中硅及其他营养元素吸收和积累特征[J].应用生态学报, 2013, 24(5):1347-1353.

HUANG Zhangting, JIANG Peikun, SONG Zhaoliang, et al. Uptake and accumulation characteristics of silicon and other nutritional elements in different age Phyllostachys praecox plants[J]. Chin J Appl Ecol, 2013, 24(5):1347-1353.
[8] 郭起荣, 杨光耀, 杜天真, 等.中国竹林的碳素特征[J].世界竹藤通讯, 2005, 3(3):25-28.

GUO Qirong, YANG Guangyao, DU Tianzhen, et al. Carbon character of Chinese bamboo forest[J]. World Bamboo Rattan, 2005, 3(3):25-28.
[9] GUI Renyi, LENG Huanan, ZHUANG Shunyao, et al. Aluminum tolerance in moso bamboo (Phyllostachys pubescens)[J]. Bot Rev, 2011, 77(3):214-222.
[10] JIANG Peikun, MENG Cifu, ZHOU Guomo, et al. Comparative study of carbon storage in different forest stands in subtropical China[J]. Bot Rev, 2011, 77(3):242-251.
[11] 应叶青, 郭璟, 魏建芬, 等.水分胁迫下毛竹幼苗光合及叶绿素荧光特性的响应[J].北京林业大学学报, 2009, 31(6):128-133.

YING Yeqing, GUO Jing, WEI Jianfen, et al. Photosynthetic and chlorophyll fluorescent responses of Phyllostachys pubescens seeding to water deficiency stress[J]. J Beijing For Univ, 2009, 31(6):128-133.
[12] DU Huaqiang, ZHOU Guomo, FAN Wenyi, et al. Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory[J]. Plant Ecol, 2010, 207(1):131-139.
[13] SONG Zhaoliang, WANG Hailong, STRONG P J, et al. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon:implications for biogeochemical carbon sequestration[J]. Earth-Sci Rev, 2012, 115(4):319-331.
[14] SONG Zhaoliang, LIU Hongyan, LI Beilei, et al. The production of phytolith-occluded carbon in China's forests:implications to biogeochemical carbon sequestration[J]. Global Change Biol, 2013, 19(9):2907-2915.
[15] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000:12-202.
[16] PARR J F, DOLIC V, LANCASTER G, et al. A microwave digestion method for the extraction of phytoliths from herbarium specimens[J]. Rev Palaeobot Palynol, 2001, 116(3/4):203-212.
[17] WALKLEY A, BLACK I A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method[J]. Soil Sci, 1934, 37(1):29-38.
[18] 陈灵芝, 黄建辉, 严昌荣.中国森林生态系统养分循环[M].北京:气象出版社, 1997:3-10..
[19] 李建武.海南岛玄武岩发育土壤的痕量元素和Sr-Nd同位素特征与大气物源贡献[D].南京:中国科学院南京土壤研究所, 2012.

LI Jianwu. Trace Elemental and Sr-Nd Isotopic Characteristics in Relation to Dust Accretion of Basalt-derived Soils in Hainan Island[D]. Nanjing:Chinese Academy of Sciences. Institure of Soil Science, 2012.
[20] DING Tiping, ZHOU Jianxiong, WAN Defang, et al. Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon[J]. Geochim Cosmochim Acta, 2008, 72(5):1381-1395.
[21] 周国模, 吴家森, 姜培坤.不同管理模式对毛竹林碳储量的影响[J].北京林业大学学报, 2006, 28(6):51-55.

ZHOU Guomo, WU Jiasen, JIANG Peikun. The impacts of different management modes on the carbon storage within moso bamboo[J]. J Beijing For Univ, 2006, 28(6):51-55.
[22] 周国模, 姜培坤, 徐秋芳.竹林生态系统中碳的固定与转化[M].北京:科学出版社, 2010:1-5.
[23] 汪庆华, 唐根年, 李睿.浙江省特色农产品立地地质背景研究[M].北京:地质出版社, 2007:10-180.
[24] PARR J F, SULLIVAN L A, QUIRK R. Sugarcane phytoliths:encapsulation and sequestration of a long-lived carbon fraction[J]. Sugar Technol, 2009, 11(1):17-21.
[25] PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars[J]. Plant Soil, 2011, 342(1-2):165-171.
[26] 孟赐福, 姜培坤, 徐秋芳, 等.植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用[J].浙江农林大学学报, 2013, 30(6):921-929.

MENG Cifu, JIANG Pengkun, XU Qiufang, et al. PhytOC in plant ecologica system and its important roles in the global soil carbon sink[J]. J Zhejiang A & F Univ, 2013, 30(6):921-929.
[27] 李自民, 宋照亮, 李蓓蕾, 等.杭州西溪湿地植物植硅体产生及其影响因素[J].浙江农林大学学报, 2013, 30(4):470-476.

LI Zimin, SONG Zhaoliang, LI Beilei, et al. Phytolith production in wetland plants of the Hangzhou Xixi Wetlands ecosystem[J]. J Zhejiang A & F Univ, 2013, 30(4):470-476.
[28] XU Yong, WONG Minghung, YANG Jianli, et al. Dynamics of carbon accumulation during the fast growth period of bamboo plant[J]. Bot Rev, 2011, 77(3):287-295.
[29] CHEN Xiangang, ZHANG Xiaoquan, ZHANG Yiping, et al. Changes of carbon stocks in bamboo stands in China during 100 years[J]. For Ecol Manage, 2009, 258(7):1489-1496.
[30] MATICHENKOV V, CALVERT D, SNYDER G. Silicon fertilizers for Citrus in Florida[J]. Proc Fla State Hort Soc, 1999, 112:5-8.
[31] ALVAREZ J, DATNOFF L E. The economic potential of silicon for integrated management and sustainable rice production[J]. Crop Prot, 2001, 20(1):43-48.
[32] MA Jianfeng, TAKAHASHI E. Soil, Fertilizer, and Plant Silicon Research in Japan[M]. Amsterdam:Elsevier 2002:9-26.
[33] LIANG Yongchao, HUA Haixia, ZHU Yongguan, et al. Importance of plant species and external silicon concentration to active silicon uptake and transport[J]. New Phytol, 2006, 172(1):63-72.
[34] MECFEL J, HINKE S, GOEDEL W A, et al. Effect of silicon fertilizers on silicon accumulation in wheat[J]. J Plant Nutr Soil Sci, 2007, 170(6):769-772.