[1] 王拉花, 杨秋生. 新型园艺栽培基质研究进展[J]. 河南农业科学, 2015, 44(3): 9−13. WANG Lahua, YANG Qiusheng. Research progress on new horticultural culture substrates [J]. Journal of Henan Agricultural Sciences, 2015, 44(3): 9−13. DOI: 10.15933/j.cnki.1004-3268.2015.03.003.

WANG Lahua, YANG Qiusheng. Research progress on new horticultural culture substrates [J]. Journal of Henan Agricultural Sciences, 2015, 44(3): 9−13. DOI: 10.15933/j.cnki.1004-3268.2015.03.003.
[2] 王鹏程. 新型园艺栽培基质研究进展探索[J]. 现代园艺, 2018(8): 120. WANG Pengcheng. Research progress of new horticultural cultivation substrates [J]. Xiandai Horticulture, 2018(8): 120. DOI: 10.14051/j.cnki.xdyy.2018.08.092.

WANG Pengcheng. Research progress of new horticultural cultivation substrates [J]. Xiandai Horticulture, 2018(8): 120.
[3] 李红波. 现代农业中无土栽培的应用策略[J]. 河南农业, 2024(14): 25−27. LI Hongbo. Application strategy of soilless culture in modern agriculture [J]. Henan Nongye, 2024(14): 25−27. DOI: 10.15904/j.cnki.hnny.2024.14.013.

LI Hongbo. Application strategy of soilless culture in modern agriculture [J]. Henan Nongye, 2024(14): 25−27. DOI: 10.15904/j.cnki.hnny.2024.14.013.
[4] 孙娟, 张海利, 陈勇兵, 等. 虫砂栽培基质对韭菜幼苗生长的影响[J]. 天津农业科学, 2025, 31(2): 1−6. SUN Juan, ZHANG Haili, CHEN Yongbing, et al. Effects of insect sand cultivation substrate on the growth of chive seedlings [J]. Tianjin Agricultural Sciences, 2025, 31(2): 1−6. DOI: 10.3969/j.issn.1006-6500.2025.02.001.

SUN Juan, ZHANG Haili, CHEN Yongbing, et al. Effects of insect sand cultivation substrate on the growth of chive seedlings [J]. Tianjin Agricultural Sciences, 2025, 31(2): 1−6. DOI: 10.3969/j.issn.1006-6500.2025.02.001.
[5] 戚兴来, 张梦楠, 吴圣众, 等. 聚氨酯-泥炭土轻质发泡材料的制备与性能研究[J]. 森林与环境学报, 2021, 41(3): 325−330. QI Xinglai, ZHANG Mengnan, WU Shengzhong, et al. Preparation and properties of polyurethane-peat soil lightweight foaming material [J]. Journal of Forest and Environment, 2021, 41(3): 325−330. DOI: 10.13324/j.cnki.jfcf.2021.03.013.

QI Xinglai, ZHANG Mengnan, WU Shengzhong, et al. Preparation and properties of polyurethane-peat soil lightweight foaming material [J]. Journal of Forest and Environment, 2021, 41(3): 325−330. DOI: 10.13324/j.cnki.jfcf.2021.03.013.
[6] 李龙. 聚己内酯改性营养化仿生多孔海绵基材的制备及其性能研究[D]. 西安: 陕西科技大学, 2023. LI Long. Preparation of Bionic Porous Sponge Substrates Modified by Polycaprolactone Study on Its Performance[D]. Xi’an: Shaanxi University of Science & Technology, 2023. DOI: 10.27290/d.cnki.gxbqc.2023.000256.

LI Long. Preparation of Bionic Porous Sponge Substrates Modified by Polycaprolactone Study on Its Performance[D]. Xi’an: Shaanxi University of Science & Technology, 2023. DOI: 10.27290/d.cnki.gxbqc.2023.000256.
[7] 刘佳璇, 李群. 利用植物纤维制备生物可降解高分子复合材料的应用研究[J]. 天津造纸, 2020, 42(3): 22−26. LIU Jiaxuan, LI Qun. Application of biodegradable polymer composite materials made from plant fibers [J]. Tianjin Paper Making, 2020, 42(3): 22−26. DOI: 10.3969/j.issn.1674-5469.2020.03.004.

LIU Jiaxuan, LI Qun. Application of biodegradable polymer composite materials made from plant fibers [J]. Tianjin Paper Making, 2020, 42(3): 22−26. DOI: 10.3969/j.issn.1674-5469.2020.03.004.
[8] 董慧玲. 植物纤维基泡沫材料孔结构调控技术的研究[D]. 西安: 陕西科技大学, 2018. DONG Huiling. Study on Controlling Pore Structure of Foam Materials Based on Plant Fibers[D]. Xi’an: Shaanxi University of Science & Technology, 2018.

DONG Huiling. Study on Controlling Pore Structure of Foam Materials Based on Plant Fibers[D]. Xi’an: Shaanxi University of Science & Technology, 2018.
[9] 庄森炀. 生物质基多孔超轻质复合材料的研究[D]. 福州: 福建农林大学, 2016. ZHUANG Senyang. Study of Bio-based Porous and Lightweight Composites Materials[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.

ZHUANG Senyang. Study of Bio-based Porous and Lightweight Composites Materials[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
[10] 刘坤. 壳聚糖水凝胶的研制及其改性研究[D]. 武汉: 武汉理工大学, 2019. LIU Kun. Study on Preparation and Modification of Chitosan Hydrogel[D]. Wuhan: Wuhan University of Technology, 2019. DOI: 10.27381/d.cnki.gwlgu.2019.001009.

LIU Kun. Study on Preparation and Modification of Chitosan Hydrogel[D]. Wuhan: Wuhan University of Technology, 2019. DOI: 10.27381/d.cnki.gwlgu.2019.001009.
[11] 陆星宇, 江天宇, 马晓军. 植物纤维发泡材料的制备工艺及气泡成形理论研究进展[J]. 高分子材料科学与工程, 2023, 39(6): 182−190. LU Xingyu, JIANG Tianyu, MA Xiaojun. Progress in the preparation process of plant fiber foam and its bubble forming theory [J]. Polymer Materials Science & Engineering, 2023, 39(6): 182−190. DOI: 10.16865/j.cnki.1000-7555.2023.0126.

LU Xingyu, JIANG Tianyu, MA Xiaojun. Progress in the preparation process of plant fiber foam and its bubble forming theory [J]. Polymer Materials Science & Engineering, 2023, 39(6): 182−190. DOI: 10.16865/j.cnki.1000-7555.2023.0126.
[12] SHARMA C, DINDA A K, MISHRA N C. Fabrication and characterization of natural origin chitosan-gelatin-alginate composite scaffold by foaming method without using surfactant [J]. Journal of Applied Polymer Science, 2013, 127(4): 3228−3241. DOI: 10.1002/app.37755.
[13] SHARMIN N, ROSNES J T, PRABHU L, et al. Effect of citric acid cross linking on the mechanical, rheological and barrier properties of chitosan[J/OL]. Molecules, 2022, 27(16): 5118[2025-05-22]. DOI: 10.3390/molecules27165118.
[14] KESHVARDOOSTCHOKAMI M, MAJIDI M, ZAMANI A, et al. A review on the use of chitosan and chitosan derivatives as the bio-adsorbents for the water treatment: removal of nitrogen-containing pollutants[J]. Carbohydrate Polymers, 2021, 273: 118625. DOI: 10.1016/j.carbpol.2021.118625.
[15] 杨上莹, 袁卉华, 易兵成, 等. 柠檬酸改性壳聚糖水凝胶的制备与性能[J]. 功能高分子学报, 2018, 31(3): 232−240. YANG Shangying, YUAN Huihua, YI Bingcheng, et al. Fabrication and characterization of citric acid modified chitosan hydrogel [J]. Journal of Functional Polymers, 2018, 31(3): 232−240. DOI: 10.14133/j.cnki.1008-9357.20171127002.

YANG Shangying, YUAN Huihua, YI Bingcheng, et al. Fabrication and characterization of citric acid modified chitosan hydrogel [J]. Journal of Functional Polymers, 2018, 31(3): 232−240. DOI: 10.14133/j.cnki.1008-9357.20171127002.
[16] JIANG Song, QIAO Congde, LIU Runpeng, et al. Structure and properties of citric acid cross-linked chitosan/poly(vinyl alcohol) composite films for food packaging applications[J]. Carbohydrate Polymers, 2023, 312: 120842. DOI: 10.1016/j.carbpol.2023.120842.
[17] 罗瑜莹. 杨木纤维多孔缓冲包装材料的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2018. LUO Yuying. Study on the Preparation and Properties of Poplar Fiber Porous Cushioning Packaging Materials [D]. Harbin: Northeast Forestry University, 2018. DOI: 10.27009/d.cnki.gdblu.2018.000003.

LUO Yuying. Study on the Preparation and Properties of Poplar Fiber Porous Cushioning Packaging Materials [D]. Harbin: Northeast Forestry University, 2018. DOI: 10.27009/d.cnki.gdblu.2018.000003.
[18] PENG Linshan, PENG Qihang, JIN Tianxiang, et al. Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution[J]. Chinese Chemical Letters, 2024, 35(5): 108891. DOI: 10.1016/j.cclet.2023.108891.
[19] LUJAN L, GOÑI M L, MARTINI R E. Cellulose-chitosan biodegradable materials for insulating applications [J]. ACS Sustainable Chemistry & Engineering, 2022, 10(36): 12000−12008. DOI: 10.1021/acssuschemeng.2c03538.
[20] 唐永康, 沈韫赜, 艾为党, 等. 不同粒径组合对植物栽培基质容重及孔性和水吸力的影响[J]. 空间科学学报, 2022, 42(6): 1161−1170. TANG Yongkang, SHEN Yunze, AI Weidang, et al. Effects of different particle sizes on the bulk density, porosity character, water suction of substrates [J]. Chinese Journal of Space Science, 2022, 42(6): 1161−1170. DOI: 10.11728/cjss2022.06.220125009.

TANG Yongkang, SHEN Yunze, AI Weidang, et al. Effects of different particle sizes on the bulk density, porosity character, water suction of substrates [J]. Chinese Journal of Space Science, 2022, 42(6): 1161−1170.
[21] LI Keyi, YANG Xueting, DONG Xin, et al. Easy regulation of chitosan-based hydrogel microstructure with citric acid as an efficient buffer[J]. Carbohydrate Polymers, 2023, 300: 120258. DOI:10.1016/j.carbpol.2022.120258.
[22] ATZORI G, PANE C, ZACCARDELLI M, et al. The role of peat-free organic substrates in the sustainable management of soilless cultivations[J]. Agronomy, 2021, 11(6): 1236. DOI: 10.3390/agronomy11061236.
[23] PARRA J G, IZA P, DOMINGUEZ H, et al. Effect of Triton X-100 surfactant on the interfacial activity of ionic surfactants SDS, CTAB and SDBS at the air/water interface: a study using molecular dynamic simulations[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603: 125284. DOI: 10.1016/j.colsurfa.2020.125284.
[24] KIM U J, KIM D, YOU J, et al. Preparation of cellulose-chitosan foams using an aqueous lithium bromide solution and their adsorption ability for Congo red [J]. Cellulose, 2018, 25(4): 2615−2628. DOI: 10.1007/s10570-018-1742-2.
[25] YI Changyu, WANG Xinchao, CHEN Qian, et al. Diverse phosphate and auxin transport loci distinguish phosphate tolerant from sensitive Arabidopsis accessions [J]. Plant Physiology, 2021, 187(4): 2656−2673. DOI: 10.1093/plphys/kiab441.