[1] BOREK M, BACZEK-KWINTA R, RAPACZ M. Photosynthetic activity of variegated leaves of Coleus × hybridus hort. cultivars characterised by chlorophyll fluorescence techniques [J]. Photosynthetica, 2016, 54(3): 331−339.
[2] LI Weixing, YANG Shunbo, LU Zhaogeng, et al. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L [J/OL]. Horticulture Research, 2018, 5 : 32[2024-05-09]. DOI: 10.1038/s41438-018-0039-9.
[3] XU Binhua, ZHANG Chaoyang, GU Yan, et al. Physiological and transcriptomic analysis of a yellow leaf mutant in watermelon [J/OL]. Scientific Reports, 2023, 13 (1): 9647[2024-05-09]. DOI: 10.1038/s41598-023-36656-6.
[4] BEALE S I, APPLEMAN D. Chlorophyll synthesis in Chlorella: regulation by degree of light limitation of growth [J]. Plant Physiology, 1971, 47(2): 230−235.
[5] GRANICK S. Protoporphyrin Ⅸ as a precursor of chlorophyll [J]. Journal of Biological Chemistry, 1948, 172(2): 717−727.
[6] CAO Zhe, DENG Zhanao. Morphological, cytological and molecular marker analyses of ‘Tapestry’ caladium variants reveal diverse genetic changes and enable association of leaf coloration pattern loci with molecular markers [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 143(2): 363−375.
[7] ZHAO Shaolu, LONG Wuhua, WANG Yihua, et al. A rice white-stripe leaf3 (wsl3) mutant lacking an HD domain-containing protein affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Biology, 2016, 59(3): 282−292.
[8] PARK S Y, YU J W, PARK J S, et al. The senescence-induced staygreen protein regulates chlorophyll degradation [J]. The Plant Cell, 2007, 19(5): 1649−1664.
[9] GUSTAFSSON Å. The plastid development in various types of chlorophyll mutations [J]. Hereditas, 2010, 28(3/4): 483−492.
[10] AWAN M A, KONZAK C F, RUTGER J N, et al. Mutagenic effects of sodium azide in rice [J]. Crop Science, 1980, 20(5): 663−668.
[11] WALLES B. The homozygous and heterozygous effects of an aurea mutation on plastid development in spruce (Picea abies L. ) [J]. Studia Forestalia Suecica, 1967, 60: 1−20.
[12] QIN Dandan, DONG Jing, XU Fuchao et al. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing [J/OL]. BMC Genomics, 2015, 16 : 838[2024-05-09]. DOI: 10.1186/s12864-015-2015-1.
[13] SCHELBERT S, AUBRY S, BURLA B, et al. Pheophytin pheophorbide hydrolase (Pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis [J]. The Plant Cell, 2009, 21(3): 767−785.
[14] RUNGNOI O, CHANPREM S, TOOJINDA T, et al. Characterization, inheritance, and molecular study of opaque leaf mutant in mungbean (Vigna radiata (L. ) Wilczek) [J]. Journal of Crop Science and Biotechnology, 2010, 13(4): 219−226.
[15] ZHA Gaohui, YIN Juan, CHENG Feng, et al. Fine mapping of CscpFtsY, a gene conferring the yellow leaf phenotype in cucumber (Cucumis sativus L. ) [J/OL]. BMC Plant Biology, 2022, 22 (1): 570[2024-05-09]. DOI: 10.1186/s12870-022-03922-0.
[16] PFALZ J, PFANNSCHMIDT T. Essential nucleoid proteins in early chloroplast development [J]. Trends in Plant Science, 2013, 18(4): 186−194.
[17] LIN B Y, YU H J. Inheritance of a striped-leaf mutant is associated with the cytoplasmic genome in maize [J]. Theoretical and Applied Genetics, 1995, 91: 915−920.
[18] LIU Cong, SHI Narong, WU Huiyu, et al. Cytogenetic analyses of PSL1 mutant, a novel low-temperature-sensitive purple-striped leaf color mutant in wheat [J]. Crop Science, 2018, 58(5): 1919−1931.
[19] HERNÁNDEZ-VERDEJA T, VUORIJOKI L, STRAND Å. Emerging from the darkness: interplay between light and plastid signaling during chloroplast biogenesis [J]. Physiologia Plantarum, 2020, 169(3): 397−406.
[20] SHIMIZU T, KACPRZAK S M, MOCHIZUKI N, et al. The retrograde signaling protein GUN1 regulates tetrapyrrole biosynthesis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(49): 24900−24906.
[21] ROCCA N L, RASCIO N, OSTER U, et al. Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors [J]. Planta, 2007, 225(4): 1019−1029.
[22] LIGUORI N, CROCE R, MARRINK S J, et al. Molecular dynamics simulations in photosynthesis [J]. Photosynthesis Research, 2020, 144(2): 273−295.
[23] WANG Fenfen, CHEN Naizhi, SHEN Shihua. iTRAQ-based quantitative proteomics analysis reveals the mechanism of golden-yellow leaf mutant in hybrid paper mulberry [J/OL]. International Journal of Molecular Sciences, 2021, 23 (1): 127[2024-05-09]. DOI: 10.3390/ijms23010127.
[24] GANG Huixin, LIU Guifeng, CHEN Su, et al. Physiological and transcriptome analysis of a yellow-green leaf mutant in birch (Betula platyphylla × B. pendula) [J/OL]. Forests, 2019, 10 (2): 120[2024-05-09]. DOI: 10.3390/f10020120.
[25] CHANG Q S, ZHANG L X, HOU X G, et al. The anatomical, physiological, and molecular analysis of a chlorophyll-deficient mutant in tree peony (Paeonia suffruticosa) [J]. Photosynthetica, 2019, 57(3): 724−730.
[26] MASUDA T, FUJITA Y. Regulation and evolution of chlorophyll metabolism [J]. Photochemical & Photobiological Sciences, 2008, 7(10): 1131−1149.
[27] HUANG Mingshu, SLEWINSKI T L, BRAKER R F, et al. Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase [J]. Molecular Plant, 2009, 2(4): 773−789.
[28] HUNG C Y, SUN Y H, CHEN Jianjun, et al. Identification of a Mg-protoporphyrin Ⅸ monomethyl ester cyclase homologue, EaZIP, differentially expressed in variegated Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants [J]. Journal of Experimental Botany, 2010, 61(5): 1483−1493.
[29] KANG Shujing, FANG Yunxia, ZOU Guoxing, et al. White-green leaf gene encoding protochlorophyllide oxidoreductase B is involved in chlorophyll synthesis of rice [J]. Crop Science, 2015, 55(1): 284−293.
[30] ZHAO Yonghui, HUANG Shengnan, ZHANG Meidi, et al. Mapping of a pale green mutant gene and its functional verification by allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Frontiers in Plant Science, 2021, 12 : 699308[2024-05-09]. DOI: 10.3389/fpls.2021.699308.
[31] LONG Wuhua, LONG Sifang, JIANG Xue, et al. A rice Yellow-Green-Leaf 219 mutant lacking the divinyl reductase affects chlorophyll biosynthesis and chloroplast development [J]. Journal of Plant Growth Regulation, 2022, 41: 3233−3242.
[32] ZHAO Yonghui, HUANG Shengnan, WANG Nan, et al. Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J/OL]. Scientific Reports, 2022, 12 : 7731[2024-05-09]. DOI: 10.1038/s41598-022-11825-1.
[33] LU Wei, TENG Yantong, HE Fushou, et al. OsChlC1, a novel gene encoding magnesium-chelating enzyme, affects the content of chlorophyll in rice [J/OL]. Agronomy, 2023, 13 (1): 129[2024-05-09]. DOI: 10.3390/agronomy13010129.
[34] HANSSON A, WILLOWS R D, ROBERTS T H, et al. Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13944−13949.
[35] MA Yangyang, SHI Jiancheng, WANG Danjuan, et al. A point mutation in the gene encoding magnesium chelatase I subunit influences strawberry leaf color and metabolism [J]. Plant Physiology, 2023, 192(4): 2737−2755.
[36] JUNG K H, HUR J, RYU C H, et al. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system [J]. Plant & Cell Physiology, 2003, 44(5): 463−472.
[37] FU Wei, YE Xueling, REN Jie, et al. Fine mapping of lcm1, a gene conferring chlorophyll-deficient golden leaf in Chinese cabbage (Brassica rapa ssp. pekinensis) [J/OL]. Molecular Breeding, 2019, 39 (4): 52[2024-05-09]. DOI: 10.1007/s11032-019-0945-z.
[38] JENSEN P E, REID J D, HUNTER C N. Modification of cysteine residues in the Chl I and Chl H subunits of magnesium chelatase results in enzyme inactivation [J]. The Biochemical Journal, 2000, 352(2): 435−441.
[39] LARKIN R M, ALONSO J M, ECKER J R, et al. GUN4, a regulator of chlorophyll synthesis and intracellular signaling [J]. Science, 2003, 299(5608): 902−906.
[40] ADHIKARI N D, FROEHLICH J E, STRAND D D, et al. GUN4-porphyrin complexes bind the ChlH/GUN5 subunit of Mg-Chelatase and promote chlorophyll biosynthesis in Arabidopsis [J]. The Plant Cell, 2011, 23(4): 1449−1467.
[41] INAGAKI N, KINOSHITA K, KAGAWA T, et al. Phytochrome B mediates the regulation of chlorophyll biosynthesis through transcriptional regulation of ChlH and GUN4 in rice seedlings [J/OL]. PLoS One, 2015, 10 (8): e0135408[2024-05-09]. DOI: 10.1371/journal.pone.0135408.
[42] RICHTER A S, HOCHHEUSER C, FUFEZAN C, et al. Phosphorylation of GENOMES UNCOUPLED 4 alters stimulation of Mg chelatase activity in Angiosperms [J]. Plant Physiology, 2016, 172(3): 1578−1595.
[43] BEALE S I. Green genes gleaned [J]. Trends in Plant Science, 2005, 10(7): 309−312.
[44] GRIMM B, PORRA R J, RÜDIGER W, et al. Chlorophylls and Bacteriochlorophylls [M]. Dordrecht: Springer Netherlands, 2006: 237−260.
[45] SAKURABA Y, HAN S H, LEE S H, et al. Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription [J]. Plant Cell Reports, 2016, 35 (1): 155−166.
[46] CHEN Junyi, ZHU Xiaoyu, REN Jun, et al. Suppressor of overexpression of CO 1 negatively regulates dark-induced leaf degreening and senescence by directly repressing pheophytinase and other senescence-associated genes in Arabidopsis [J]. Plant Physiology, 2017, 173(3): 1881−1891.
[47] ZHU Xiaoyu, CHEN Junyi, XIE Zuokun, et al. Jasmonic acid promotes degreening via MYC2/3/4- and ANAC019/055/072-mediated regulation of major chlorophyll catabolic genes [J]. The Plant Journal, 2015, 84(3): 597−610.
[48] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves [J/OL]. Scientific Reports, 2016, 6: 23609 [2024-05-09]. DOI: 10.1038/srep23609.
[49] ZHANG Yongqiang, LIU Zhongjuan, CHEN Yadi, et al. PHYTOCHROME-INTERACTING FACTOR 5 (PIF5) positively regulates dark-induced senescence and chlorophyll degradation in Arabidopsis [J]. Plant Science, 2015, 237: 57−68.
[50] SONG Yi, YANG Chuangwei, GAO Shan, et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 [J]. Molecular Plant, 2014, 7(12): 1776−1787.
[51] QIU Kai, LI Zhongpeng, YANG Zhen, et al. EIN3 and ORE1 accelerate degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis [J/OL]. PLoS Genetics, 2015, 11 (7): e1005399[2024-05-09]. DOI: 10.1371/journal.pgen.1005399.
[52] SAKURABA Y, PARK S Y, KIM Y S, et al. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence [J]. Molecular Plant, 2014, 7(8): 1288−1302.
[53] ZENG Zhaoqiong, LIN Tianzi, ZHAO Jieyu, et al. OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa) [J]. Journal of Integrative Agriculture, 2020, 19(3): 612−623.
[54] JOHNSON J D. Do carotenoids serve as transmembrane radical channels [J]. Free Radical Biology and Medicine, 2009, 47(3): 321−323.
[55] EZQUERRO M, BURBANO-ERAZO E, RODRIGUEZ-CONCEPCION M. Overlapping and specialized roles of tomato phytoene synthases in carotenoid and abscisic acid production [J]. Plant Physiology, 2023, 193(3): 2021−2036.
[56] QIN Genji, GU Hongya, MA Ligeng, et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis [J]. Cell Research, 2007, 17(5): 471−482.
[57] LU Shan, LI Li. Carotenoid metabolism: biosynthesis, regulation, and beyond [J]. Journal of Integrative Plant Biology, 2008, 50(7): 778−785.
[58] SU Tongbing, YU Shuancang, ZHANG J W F, et al. Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis) [J]. Plant Molecular Biology Reporter, 2015, 33(3): 648−659.
[59] LI Peirong, ZHANG Shujiang, ZHANG Shifan, et al. Carotenoid identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage [J/OL]. Molecular Breeding, 2015, 35 (2): 72[2024-05-09]. DOI: 10.1007/s11032-015-0190-z.
[60] CAZZONELLI C I, CUTTRISS A J, COSSETTO S B, et al. Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8 [J]. The Plant Cell, 2009, 21(1): 39−53.
[61] CAZZONELLI C I, ROBERTS A C, CARMODY M E, et al. Transcriptional control of set domain group 8 and carotenoid isomerase during Arabidopsis development [J]. Molecular Plant, 2010, 3(1): 174−191.
[62] DONG Naiqian, LIN Hongxuan. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions [J]. Journal of Integrative Plant Biology, 2021, 63(1): 180−209.
[63] SUN Chenglong, ZHANG Minmin, DONG Hongjing, et al. A spatially-resolved approach to visualize the distribution and biosynthesis of flavones in Scutellaria baicalensis Georgi [J/OL]. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179 : 113014[2025-05-09]. DOI: 10.1016/j.jpba.2019.113014.
[64] LIU Weixin, FENG Yi, YU Suhang, et al. The flavonoid biosynthesis network in plants [J/OL]. International Journal of Molecular Sciences, 2021, 22 (23): 12824[2024-05-09]. DOI: 10.3390/ijms222312824.
[65] LI Wenji, LI Huigen, SHI Lisha, et al. Leaf color formation mechanisms in Alternanthera bettzickiana elucidated by metabolite and transcriptome analyses [J/OL]. Planta, 2022, 255 (3): 59[2024-05-09]. DOI: 10.1007/s00425-022-03840-3.
[66] HERRAIZ A, STOKES L, TURNBULL C, et al. Developing a new variety of Kentia palms (Howea forsteriana): up-regulation of cytochrome b561 and Chalcone synthase is associated with red colouration of the stems [J]. Botany Letters, 2018, 165(2): 241−247.
[67] STEYN W J, WAND S E, HOLCROFT D M, et al. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection [J]. The New Phytologist, 2002, 155(3): 349−361.
[68] LI Yanjun, ZHOU Yang, CHEN Hong, et al. Transcriptomic analyses reveal key genes involved in pigment biosynthesis related to leaf color change of Liquidambar formosana Hance [J/OL]. Molecules, 2022, 27 (17): 5433[2024-05-09]. DOI: 10.3390/molecules27175433.
[69] SUN Binmei, ZHU Zhangsheng, CAO Panrong, et al. Purple foliage coloration in tea (Camellia sinensis L. ) arises from activation of the R2R3-MYB transcription factor CsAN1 [J/OL]. Scientific Reports, 2016, 6 : 32534[2024-05-09]. DOI: 10.1038/srep32534.
[70] AN Guanghui, CHEN Jiongjiong. Frequent gain- and loss-of-function mutations of the BjMYB113 gene accounted for leaf color variation in Brassica juncea [J/OL]. BMC Plant Biology, 2021, 21 (1): 301[2024-05-09]. DOI: 10.1186/s12870-021-03084-5.
[71] GUAN Xiayu, WANG Wei, YE Qinghua, et al. De novo transcriptomic sequencing unraveled the molecular mechanisms of VvMybA1 underlying the alteration of Ficus lyrata leaf color [J/OL]. Acta Physiologiae Plantarum, 2019, 41 (1): 16[2024-05-09]. DOI: 10.1007/s11738-019-2809-x.
[72] WANG Chongnan, JI Wenkai, LIU Yucheng, et al. The antagonistic MYB paralogs RH1 and RH2 govern anthocyanin leaf markings in Medicago truncatula [J]. The New Phytologist, 2021, 229(6): 3330−3344.
[73] JENSEN R G, BASSHAM J A. Photosynthesis by isolated chloroplasts [J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(4): 1095−1101.
[74] CHANG Qingshan, CHEN Sumei, CHEN Yu, et al. Anatomical and physiological differences and differentially expressed genes between the green and yellow leaf tissue in a variegated Chrysanthemum variety [J]. Molecular Biotechnology, 2013, 54(2): 393−411.
[75] 姬语潞, 杨维, 李涵, 等. 铁皮石斛叶色突变体的叶绿体超微结构、光合色素和叶绿素荧光特性的研究[J]. 植物科学学报, 2020, 38(2): 260−268

JI Yulu, YANG Wei, LI Han, et al. Study on chloroplast ultrastructure, photosynthetic pigment and chlorophyll fluorescence characteristics of Dendrobium candidum leaf color mutant [J]. Plant Science Journal, 2020, 38(2): 260−268.
[76] 许庆全, 杨凤玺, 叶庆生, 等. 墨兰‘达摩’叶艺品系光合色素质量分数、叶绿素荧光特性和叶绿体超微结构的比较[J]. 热带作物学报, 2017, 38(7): 1210−1215.

XU Qingquan, YANG Fengxi, YE Qingsheng, et al. Comparison of photosynthetic pigment content, chlorophyll fluorescence characteristics and chloroplast ultrastructure of a leaf art strain of moran ‘dharma’ [J]. Chinese Journal of Tropical Crops, 2017, 38(7): 1210−1215.
[77] LI Ji, WU Kunlin, LI Lin, et al. Cytological, biochemical, and transcriptomic analyses of a novel yellow leaf variation in a Paphiopedilum (Orchidaceae) SCBG COP15 [J/OL]. Genes, 2021, 13 (1): 71[2024-05-09]. DOI: 10.3390/genes13010071.
[78] 杨冲, 张扬勇, 方智远, 等. 甘蓝叶色黄化突变体 YL-1 的光合生理特性及其叶绿体的超微结构[J]. 园艺学报, 2014, 41(6): 1133−1144.

YANG Chong, ZHANG Yangyong, FANG Zhiyuan, et al. Photosynthetic physiological characteristics and chloroplast ultrastructure of yellow leaf mutant YL-1 in cabbage [J]. Acta Horticulturae Sinica, 2014, 41(6): 1133−1144.
[79] LUO Zhongxia, ZHANG Xiongjian, CHEN Jingyi, et al. Examination and genetic analysis of a yellow-green leaf mutant a269 of sweetpotato [J]. Plant Breeding, 2020, 139(2): 381−388.
[80] ZHANG Lulu, ZHANG Junkang, MAO Yunfei, et al. Physiological analysis and transcriptome sequencing of a delayed-green leaf mutant ‘Duojiao’ of ornamental crabapple (Malus sp. ) [J]. Physiology and Molecular Biology of Plants, 2022, 28(10): 1833−1848.
[81] GAO Linlin, HONG Zhenghui, WANG Yinsong, et al. Chloroplast proteostasis: a story of birth, life, and death [J/OL]. Plant Communications, 2023, 4 (1): 100424[2024-05-09]. DOI: 10.1016/j.xplc.2022.100424.
[82] ZAGARI N, SANDOVAL-IBAÑEZ O, SANDAL N, et al. SNOWY COTYLEDON 2 promotes chloroplast development and has a role in leaf variegation in both Lotus japonicus and Arabidopsis thaliana [J]. Molecular Plant, 2017, 10(5): 721−734.
[83] HAMMANI K, TAKENAKA M, MIRANDA R, et al. A PPR protein in the PLS subfamily stabilizes the 5'-end of processed rpl16 mRNAs in maize chloroplasts [J]. Nucleic Acids Research, 2016, 44(9): 4278−4288.
[84] ZOSCHKE R, WATKINS K P, MIRANDA R G, et al. The PPR-SMR protein PPR53 enhances the stability and translation of specific chloroplast RNAs in maize [J]. The Plant Journal: for Cell and Molecular Biology, 2016, 85(5): 594−606.
[85] ZHANG Jian, XIAO Jianwei, LI Yuqian, et al. PDM3, a pentatricopeptide repeat-containing protein, affects chloroplast development [J]. Journal of Experimental Botany, 2017, 68(20): 5615−5627.
[86] WANG Xinwei, ZHAO Lirong, MAN Yi, et al. PDM4 a pentatricopeptide repeat protein, affects chloroplast gene expression and chloroplast development in Arabidopsis thaliana [J/OL]. Frontiers in Plant Science, 2020, 11 : 1198[2024-05-09]. DOI: 10.3389/fpls.2020.01198.
[87] LÜ Yang, WANG Yueying, ZHANG Qiang, et al. WAL3 encoding a PLS-type PPR protein regulates chloroplast development in rice [J/OL]. Plant Science, 2022, 323 : 111382[2024-05-09]. DOI: 10.1016/j.plantsci.2022.111382.
[88] LAN Jie, LIN Qibing, ZHOU Chunlei, et al. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development [J]. Journal of Integrative Plant Biology, 2023, 65(7): 1687−1702.
[89] WANG Ying, REN Yulong, ZHOU Kunneng, et al. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development [J/OL]. Frontiers in Plant Science, 2017, 8 : 1116[2024-05-09]. DOI: 10.3389/fpls.2017.01116.
[90] LEE K, PARK S J, des FRANCS-SMALL C C, et al. The coordinated action of PPR4 and EMB2654 on each intron half mediates trans-splicing of rps12 transcripts in plant chloroplasts [J]. The Plant Journal: for Cell and Molecular Biology, 2019, 100(6): 1193−1207.
[91] YAN Junjie, ZHANG Qunxia, YIN Ping. RNA editing machinery in plant organelles [J]. Science China Life Sciences, 2018, 61(2): 162−169.
[92] CUI Xuean, WANG Yanwei, WU Jinxia, et al. The RNA editing factor DUA1 is crucial to chloroplast development at low temperature in rice [J]. The New Phytologist, 2019, 221(2): 834−849.
[93] ZHANG Qiang, WANG Yaliang, XIE Wei, et al. OsMORF9 is necessary for chloroplast development and seedling survival in rice [J/OL]. Plant Science, 2021, 307 : 110907[2024-05-09]. DOI: 10.1016/j.plantsci.2021.110907.
[94] 高贤明, 陈灵芝. 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J]. Acta Botanica Sinica, 1998, 40(6): 553−559.

GAO Xianming, CHEN Lingzhi. The revision of plant life-form system and an analysis of the life-form spectrum of forest plants in the warm temperate zone of China [J]. Acta Botanica Sinica, 1998, 40(6): 553−559.
[95] STERN D B, HANSON M R, BARKAN A. Genetics and genomics of chloroplast biogenesis: maize as a model system [J]. Trends in Plant Science, 2004, 9(6): 293−301.
[96] GAO Tongmei, WEI Shuangling, CHEN Jing, et al. Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L. ) mutant Siyl-1 with yellow-green leaf color [J]. Genes & Genomics, 2020, 42(1): 25−39.
[97] TANG Yuhan, FANG Ziwen, LIU Mi, et al. Color characteristics, pigment accumulation and biosynthetic analyses of leaf color variation in herbaceous peony (Paeonia lactiflora Pall. ) [J/OL]. 3 Biotech, 2020, 10 (2): 76[2024-05-09]. DOI: 10.1007/s13205-020-2063-3.
[98] HAN Hongwei, ZHOU Yuan, LIU Huifang, et al. Transcriptomics and metabolomics analysis provides insight into leaf color and photosynthesis variation of the yellow-green leaf mutant of Hami melon (Cucumis melo L. ) [J/OL]. Plants, 2023, 12 (8): 1623[2024-05-09]. DOI: 10.3390/plants12081623.
[99] BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines [J]. Photosynthesis Research, 2016, 130(1/3): 251−266.
[100] RUAN Banpu, GAO Zhenyu, ZHAO Juan, et al. The rice YGL gene encoding an Mg2+-chelatase ChlD subunit is affected by temperature for chlorophyll biosynthesis [J]. Journal of Plant Biology, 2017, 60(4): 314−321.
[101] ZHANG Haitao, LI Jinjie, YOO J H, et al. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development [J]. Plant Molecular Biology, 2006, 62(3): 325−337.
[102] DENG Xiaojuan, ZHANG Haiqing, WANG Yue, et al. Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica) [J/OL]. PLoS One, 2014, 9 (6): e99564[2024-05-09]. DOI: 10.1371/journal.pone.0099564.
[103] CHEN Ping, HU Haitao, ZHANG Yu, et al. Genetic analysis and fine-mapping of a new rice mutant, white and lesion mimic leaf [J]. Plant Growth Regulation, 2018, 85(3): 425−435.
[104] 王建玉, 王志鹏, 段祥坤. 甜瓜芽黄标记性状的发现与遗传分析[J]. 中国瓜菜, 2019, 32(2): 15−17.

WANG Jianyu, WANG Zhipeng, DUAN Xiangkun. Discovery and genetic analysis of yellow markers in melon bud [J]. China Cucurbits and Vegetables, 2019, 32(2): 15−17.
[105] WU Dianxing, SHU Qingyao, XIA Yingwu. In vitro mutagenesis induced novel thermo/photoperiod-sensitive genic male sterile indica rice with green-revertible xanthan leaf color marker [J]. Euphytica, 2002, 123: 195−202.
[106] LIM S H, SOHN S H, KIM D H, et al. Use of an anthocyanin production phenotype as a visible selection marker system in transgenic tobacco plant [J]. Plant Biotechnology Reports, 2012, 6(3): 203−211.
[107] LI Chuan, WANG Jingwen, HU Zhaoyong, et al. A valine residue deletion in ZmSig2A, a sigma factor, accounts for a revertible leaf-color mutation in maize [J]. The Crop Journal, 2021, 9(6): 1330−1343.
[108] SIDDAPPA S, SHARMA N, SALARIA N, et al. CRISPR/Cas9-mediated editing of phytoene desaturase (PDS) gene in an important staple crop, potato [J/OL]. 3 Biotech, 2023, 13 (5): 129[2024-05-09]. DOI: 10.1007/s13205-023-03543-w.
[109] NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system [J/OL]. Scientific Reports, 2016, 6 : 31481[2024-05-09]. DOI: 10.1038/srep31481.
[110] JEONG Y S, CHOI H, KIM J K, et al. Overexpression of OsMYBR22/OsRVE1 transcription factor simultaneously enhances chloroplast-dependent metabolites in rice grains [J]. Metabolic Engineering, 2022, 70: 89−101.
[111] LIU Guofeng, HAN Zhuoxiao, FENG Lin, et al. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar ‘Yu-Jin-Xiang’ with an emphasis on catechin production [J/OL]. Scientific Reports, 2017, 7 : 45062[2024-05-09]. DOI: 10.1038/srep45062.
[112] 金笑雨, 王艺光, 赵宏波, 等. 彩叶桂叶色变化及生理特征分析[J]. 浙江农林大学学报, 2024, 41(5): 1056−1065.

JIN Xiaoyu, WANG Yiguang, ZHAO Hongbo, et al. Color change and physiological characteristics in Osmanthus fragrans colour group [J]. Journal of Zhejiang A&F University, 2024, 41(5): 1056−1065.