[1] ABEL S, TICCONI C A, DELATORRE C A. Phosphate sensing in higher plants [J]. Physiol Plant, 2002, 115(1): 1 − 8.
[2] VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytol, 2003, 157(3): 423 − 447.
[3] SCHACHTMAN D P, REID R J, AYLING S M. Phosphorus uptake by plants: from soil to cell [J]. Plant Physiol, 1998, 116(2): 447 − 453.
[4] POIRIER Y, BUCHER M. Phosphate transport and homeostasis in Arabidopsis [J/OL]. Am Soc Plant Biol, 2002: e0024 [2021-06-05]. doi: 10.1199/tab.0024.
[5] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops [J]. Annu Rev Plant Biol, 2014, 65: 95 − 123.
[6] PASZKOWSKI U, KROKEN S, ROUX C, et al. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis [J]. Proc Nat Acad Sci, 2002, 99(20): 13324 − 13329.
[7] NAGY R, VASCONCELOS M J V, ZHAO S, et al. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L. ) [J]. Plant Biol, 2006, 8(2): 186 − 197.
[8] RAE A L, CYBINSKI D H, JARMEY J M, et al. Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family [J]. Plant Mol Biol, 2003, 53(1/2): 27 − 36.
[9] NAGY R, KARANDASHOV V, CHAGUE V, et al. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species [J]. Plant J, 2005, 42(2): 236 − 250.
[10] PAO S S, PAULSEN I T, SAIER M H. Major facilitator superfamily [J]. Microbiol Mol Biol Rev, 1998, 62(1): 1 − 34.
[11] WANG Duoli, LÜ Sulian, JIANG Ping, et al. Roles, regulation, and agricultural application of plant phosphate transporters [J/OL]. Front Plant Sci, 2017, 8: 817[2021-06-05]. doi: 10.3389/fpls.201700817.
[12] AYADI A, DAVID P, ARRIGHI J F, et al. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling [J]. Plant Physiol, 2015, 167(4): 1511 − 1526.
[13] SUN Shubin, GU Mian, CAO Yue, et al. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice [J]. Plant Physiol, 2012, 159(4): 1571 − 1581.
[14] LI Yiting, ZHANG Jun, ZHANG Xiao, et al. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds [J]. Plant Sci, 2015, 230: 23 − 32.
[15] INOUE Y, KOBAE Y, OMOTO E, et al. The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves [J]. Plant Cell Physiol, 2014, 55(12): 2102 − 2111.
[16] GORDON-WEEKS R, TONG Yiping, DAVIES T G E, et al. Restricted spatial expression of a high-affinity phosphate transporter in potato roots [J]. J Cell Sci, 2003, 116(15): 3135 − 3144.
[17] SONG Xinzhang, PENG Changhui, CIAIS P, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest [J/OL]. Sci Adv, 2020, 6(12): eaaw5790[2021-06-20]. doi: 10.1126/sciadv.aaw5790.
[18] 郑德华. 不同土壤类型对毛竹林生长的影响研究[J]. 世界竹藤通讯, 2014, 12(5): 32 − 34.

ZHENG Dehua. Influence of soil type on the growth of Phyllostachys heterocycla cv. pubescens forest [J]. World Bamboo Rattan, 2014, 12(5): 32 − 34.
[19] 严圣钦. 低产毛竹林的成因和改造技术[J]. 世界竹藤通讯, 2009, 7(3): 34 − 36.

YAN Shengqin. Causes for low-yield moso forest and the improvement technology [J]. World Bamboo Rattan, 2009, 7(3): 34 − 36.
[20] DU Enzai, TERRER C, PELLEGRINI A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation [J]. Nat Geosci, 2020, 13(3): 221 − 226.
[21] 赵光强, 付循成, 曹慧. 高等植物的磷营养研究[J]. 安徽农业科学, 2007, 35(31): 9851 − 9854.

ZHAO Guangqiang, FU Xuncheng, CAO Hui. Research on the phosphorus nutrition in higher plant [J]. J Anhui Agric Sci, 2007, 35(31): 9851 − 9854.
[22] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
[23] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33(7): 1870 − 1874.
[24] HE Zilong, ZHANG Huangkai, GAO Shenghan, et al. Evolview V2: an online visualization and management tool for customized and annotated phylogenetic trees [J]. Nucleic Acids Res, 2016, 44(W1): W236 − W241.
[25] IVANOVA Z, SABLOK G, DASKALOVA E, et al. Chloroplast genome analysis of resurrection tertiary relict haberlea rhodopensis highlights genes important for desiccation stress response [J/OL]. Front Plant Sci, 2017, 8: 204[2021-06-21]. doi: 10.3389/fpls.2017.00204.
[26] ZHAO Hansheng, GAO Zimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of Moso bamboo (Phyllostachys edulis) [J/OL]. GigaScience, 2018, 7(10): giy115[2021-06-23]. doi: 10.1093/gigascience/giy115.
[27] BUN-YA M, NISHIMURA M, HARASHIMA S, et al. The PHO84 gene of saccharomyces cerevisiae encodes an inorganic phosphate transporter [J]. Mol Cell Biol, 1991, 11(6): 3229 − 3238.
[28] AZIZ T, FINNEGAN P M, LAMBERS H, et al. Organ-specific phosphorus-allocation patterns and transcript profiles linked to phosphorus efficiency in two contrasting wheat genotypes [J]. Plant Cell Environ, 2014, 37(4): 943 − 960.
[29] 林翩翩, 白有煌, 周明兵. 毛竹细胞色素P450的基因组学分析[J]. 植物生理学报, 2014, 50(9): 1387 − 1400.

LIN Pianpian, BAI Youhuang, ZHOU Mingbing. Genomics analysis of cytochrome P450 monooxygenase genes in Phyllostachys heterocycla [J]. Plant Physiol J, 2014, 50(9): 1387 − 1400.
[30] 王捷, 魏爱丽, 石瑛, 等. 念珠藻属植物hetR基因的适应性进化分析[J]. 植物科学学报, 2020, 38(1): 23 − 31.

WANG Jie, WEI Aili, SHI Ying, et al. Adaptive evolutionary analysis of hetR gene in Nostoc [J]. Plant Sci J, 2020, 38(1): 23 − 31.
[31] YE Ying, YUAN Jing, CHANG Xiaojian, et al. The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in rice [J/OL]. PLoS One, 2015, 10(5): e0126186[2021-06-23]. doi: 10.1371/journal.pone.0126186.
[32] MUDGE S R, RAE A L, DIATLOFF E, et al. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis [J]. Plant J, 2002, 31(3): 341 − 353.
[33] VERSAW W K, HARRISON M J. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses [J]. Plant Cell, 2002, 14(8): 1751 − 1766.
[34] KARTHIKEYAN A S, VARADARAJAN D K, JAIN A, et al. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis [J]. Planta, 2007, 225(4): 907 − 918.
[35] GOFF S A, RICKE D, LAN T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002, 296(5565): 92 − 100.
[36] CHEN Aiqun, HU Jiang, SUN Shubin, et al. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species [J]. New Phytol, 2007, 173(4): 817 − 831.
[37] FERRO M, SALVI D, RIVIÈRE-ROLLAND H, et al. Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters [J]. Proc Natl Acad Sci, 2002, 99(17): 11487 − 11492.
[38] GUO Chengjin, ZHAO Xiaolei, LIU Xiaoman, et al. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions [J]. Planta, 2013, 237(4): 1163 − 1178.
[39] RAUSCH C, BUCHER M. Molecular mechanisms of phosphate transport in plants [J]. Planta, 2002, 216(1): 23 − 37.
[40] SAIA S, RAPPA V, RUISI P, et al. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat [J/OL]. Front Plant Sci, 2015, 6: 815[2021-04-15]. doi: 10.3389/fpls.2015.00815.
[41] WOHLRAB H. Identification of the N-ethylmaleimide reactive protein of the mitochondrial phosphate transporter [J]. Biochemistry, 1979, 18(10): 2098 − 2102.
[42] GUO Biwei, IRIGOYEN S, FOWLER T B, et al. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues [J]. Plant Signaling Behav, 2008, 3(10): 784 − 790.
[43] WOHLRAB H, BRIGGS C. Yeast mitochondrial phosphate transport protein expressed in Escherichia coli. Site-directed mutations at threonine-43 and at a similar location in the second tandem repeat (isoleucine-141) [J]. Biochemistry, 1994, 33(32): 9371 − 9375.
[44] MISSON J, RAGHOTHAMA K G, JAIN A, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation [J]. Proc Natl Acad Sci, 2005, 102(33): 11934 − 11939.
[45] AI Penghui, SUN Suibin, ZHAO Jianning, et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation [J]. Plant J, 2009, 57(5): 789 − 809.