[1] |
ZENG Yonglun, LIANG Zizhen, LIU Zhiqi, et al. Recent advances in plant endomembrane research and new microscopical techniques [J]. New Phytologist, 2023, 240(1): 41 − 60. |
[2] |
吴凡, 沈锦波, 胡帅. 植物ESCRT复合体的功能研究进展[J]. 植物学报, 2022, 57(5): 697 − 712.
WU Fan, SHEN Jinbo, HU Shuai. Research advances of the plant ESCRT machinery [J]. Chinese Bulletin of Botany, 2022, 57(5): 697 − 712. |
[3] |
LEUNG K F, DACKS J B, FIELD M C. Evolution of the multivesicular body ESCRT machinery; retention across the the eukaryotic lineage [J]. Traffic, 2008, 9(10): 1698 − 1716. |
[4] |
GAO Caiji, LUO Ming, ZHAO Qiong, et al. A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth [J]. Current Biology, 2014, 24(21): 2556 − 2563. |
[5] |
GAO Caiji, ZHUANG Xiaohong, SHEN Jinbo, et al. Plant ESCRT complexes: moving beyond endosomal sorting [J]. Trends in Plant Science, 2017, 22(11): 986 − 998. |
[6] |
RADULOVIC M, STENMARK H. ESCRTs in membrane sealing [J]. Biochemical Society Transactions, 2018, 46(4): 773 − 778. |
[7] |
VIETRI M, RADULOVIC M, STENMARK H. The many functions of ESCRTs [J]. Nature Reviews Molecular Cell Biology, 2020, 21(1): 25 − 42. |
[8] |
ZHU Jiankang. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313 − 324. |
[9] |
YANG Yongqing, GUO Yan. Unraveling salt stress signaling in plants [J]. Journal of Integrative Plant Biology, 2018, 60(9): 796 − 804. |
[10] |
陈素梅, 王新慧, 李菲, 等. ABA调控植物盐胁迫应答机制研究进展[J]. 南京农业大学学报, 2022, 45(5): 856 − 863.
CHEN Sumei, WANG Xinhui, LI Fei, et al. Advances in ABA regulated responses of plant to salt stress [J]. Journal of Nanjing Agricultural University, 2022, 45(5): 856 − 863. |
[11] |
WANG Xiangfeng, XU Min, GAO Caiji, et al. The roles of endomembrane trafficking in plant abiotic stress responses [J]. Journal of Integrative Plant Biology, 2020, 62(1): 55 − 69. |
[12] |
NGOU B P M, JONES J D G, DING P. Plant immune networks [J]. Trends in Plant Science, 2022, 27(3): 255 − 273. |
[13] |
YUAN Minhang, JIANG Zeyu, BI Guozhi, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity [J]. Nature, 2021, 592(7852): 105 − 109. |
[14] |
赵雅惠, 吴旻, 林福呈, 等. 内体分拣转运复合体的组成及其功能研究[J]. 中国细胞生物学学报, 2017, 39(2): 215 − 222.
ZHAO Yahui, WU Min, LIN Fucheng, et al. Studies on components and functions of endosomal sorting complex required for transport [J]. Chinese Journal of Cell Biology, 2017, 39(2): 215 − 222. |
[15] |
KORBEI B, MOULINIER-ANZOLA J, DE-ARAUJO L, et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein [J]. Current Biology, 2013, 23(24): 2500 − 2505. |
[16] |
MOULINIER-ANZOLA J, SCHWIHLA M, DE-ARAÚJO L, et al. TOLs function as ubiquitin receptors in the early steps of the ESCRT pathway in higher plants [J]. Molecular Plant, 2020, 13(5): 717 − 731. |
[17] |
KORBEI B, LUSCHNIG C. Plasma membrane protein ubiquitylation and degradation as determinants of positional growth in plants [J]. Journal of Integrative Plant Biology, 2013, 55(9): 809 − 823. |
[18] |
MOSESSO N, NAGEL M K, ISONO E. Ubiquitin recognition in endocytic trafficking - with or without ESCRT-0 [J/OL]. Journal of Cell Science, 2019, 132(16): jcs232868[2024-01-28]. doi: 10.1242/jcs.232868. |
[19] |
CHATELLARD-CAUSSE C, BLOT B, CRISTINA N, et al. Alix (ALG-2-interacting protein X), a protein involved in apoptosis, binds to endophilins and induces cytoplasmic vacuolization [J]. Journal of Biological Chemistry, 2002, 277(32): 29108 − 29115. |
[20] |
REYES F C, BUONO R A, ROSCHZTTARDTZ H, et al. A novel endosomal sorting complex required for transport (ESCRT) component in Arabidopsis thaliana controls cell expansion and development [J]. Journal of Biological Chemistry, 2014, 289(8): 4980 − 4988. |
[21] |
SHEN Jinbo, GAO Caiji, ZHAO Qiong, et al. AtBRO1 functions in ESCRT-Ⅰ complex to regulate multivesicular body protein [J]. Molecular Plant, 2016, 9(5): 760 − 763. |
[22] |
SHEN Jinbo, ZHAO Qiong, WANG Xiangfeng, et al. A plant Bro1 domain protein BRAF regulates multivesicular body biogenesis and membrane protein homeostasis [J/OL]. Nature Communications, 2018, 9(1): 3784[2024-01-28]. doi: 10.1038/s41467-018-05913-y. |
[23] |
WOLLERT T, WUNDER C, LIPPINCOTT-SCHWARTZ J, et al. Membrane scission by the ESCRT-Ⅲ complex [J]. Nature, 2009, 458(7235): 172 − 177. |
[24] |
CHRIST L, RAIBORG C, WENZEL E M, et al. Cellular functions and molecular mechanisms of the ESCRT membrane-scission [J]. Trends in Biochemical Sciences, 2017, 42(1): 42 − 56. |
[25] |
黄欢, 李万杰, 杨冬. ESCRT 系统: 一个多功能的蛋白转运及膜剪切机器[J]. 中国生物化学与分子生物学报, 2013, 29(2): 99 − 109.
HUANG Huan, LI Wanjie, YANG Dong. ESCRT system: a multifunctional machine for protein trafficking and membrane scission [J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(2): 99 − 109. |
[26] |
赵莎莎, 石丽君, 吴迎. ESCRT复合体在细胞质膜损伤修复中的功能[J]. 生物化学与生物物理进展, 2022, 49(3): 503 − 513.
ZHAO Shasha, SHI Lijun, WU Ying. The function of ESCRT complex in plasma membrane repair [J]. Progress in Biochemistry and Biophysics, 2022, 49(3): 503 − 513. |
[27] |
KOSTELANSKY M S, SUN J, LEE S, et al. Structural and functional organization of the ESCRT-I trafficking complex [J]. Cell, 2006, 125(1): 113 − 126. |
[28] |
HENNE W M, BUCHKOVICH N J, EMR S D. The ESCRT pathway [J]. Developmental Cell, 2011, 21(1): 77 − 91. |
[29] |
TEO H, GILL D J, SUN J, et al. ESCRT-Ⅰ core and ESCRT-Ⅱ GLUE domain structures reveal role for GLUE in linking [J]. Cell, 2006, 125(1): 99 − 111. |
[30] |
BABST M, KATZMANN D J, ESTEPA-SABAL E J, et al. ESCET-Ⅲ: an endosome-associated heterooligomeric protein complex required for MVB sorting [J]. Developmental Cell, 2002, 3(2): 271 − 282. |
[31] |
HIERRO A, SUN J, RUSNAK A S, et al. Structure of the ESCRT-Ⅱ endosomal trafficking complex [J]. Nature, 2004, 431(7005): 221 − 225. |
[32] |
SCHLÖSSER L, SACHSE C, LOW H H, et al. Conserved structures of ESCRT-Ⅲ superfamily members across domains of life [J]. Trends in Biochemical Sciences, 2023, 48(11): 993 − 1004. |
[33] |
MORITA E. Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell plos one division [J]. FEBS Journal, 2012, 279(8): 1399 − 1406. |
[34] |
XIA Zongliang, WEI Yangyang, SUN Kaile, et al. The maize AAA-type protein SKD1 confers enhanced salt and drought stress tolerance in transgenic tobacco by interacting with Lyst-interacting protein 5 [J/OL]. PLoS One , 2013, 8(7): e69787[2024-01-28]. doi: 10.1371/journal.pone.0069787. |
[35] |
BELDA-PALAZON B, RODRIGUEZ L, FERNANDEZ M A, et al. FYVE1/FREE1 interacts with the PYL4 ABA receptor and mediates its delivery to the vacuolar degradation pathway [J]. Plant Cell, 2016, 28(9): 2291 − 2311. |
[36] |
WANG Fei, SHANG Yifen, FAN Baofang, et al. Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense [J/OL]. PLoS Pathogens, 2014, 10(7): e1004243[2024-01-28]. doi: 10.1371/journal.ppat.1004243. |
[37] |
GAO Caiji, ZHUANG Xiaohong, CUI Yong, et al. Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(6): 1886 − 1891. |
[38] |
KALINOWSKA K, NAGEL M K, GOODMAN K, et al. Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): E5543 − E5551. |
[39] |
TAKAHASHI Y, ZHANG J, HSU P K, et al. MAP3 Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response [J/OL]. Nature Communications, 2020, 11(1): 12[2024-01-28]. doi: 10.1038/s41467-019-13875-y. |
[40] |
ZHAI Qianting, LANDESMAN M B, CHUNG H Y, et al. Activation of the retroviral budding factor ALIX [J]. Journal of Virology, 2011, 85(17): 9222 − 9226. |
[41] |
GARCÍA-LEÓN M, CUYAS L, EL-MONEIM D A, et al. Arabidopsis ALIX regulates stomatal aperture and turnover of abscisic acid [J]. Plant Cell, 2019, 31(10): 2411 − 2429. |
[42] |
HU Shuai, LI Baiying, WU Fan, et al. Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins [J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(20): e2200492119[2024-01-28]. doi: 10.1073/pnas.2200492119. |
[43] |
FIDLER J, GRASKA J, GIETLER M, et al. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli [J/OL]. Cell, 2022, 11(8): 1352[2024-01-28]. doi:10.3390/cells11081352. |
[44] |
GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid [J]. Plant Cell, 2012, 24(6): 2483 − 2496. |
[45] |
HSU P K, DUBEAUX G, TAKAHASHI Y, et al. Signaling mechanisms in abscisic acid-mediated stomatal closure [J]. Plant Journal, 2021, 105(2): 307 − 321. |
[46] |
YU Feifei, WU Yaorong, XIE Qi. Precise protein post-translational modifications modulate ABI5 activity [J]. Trends in Plant Science, 2015, 20(9): 569 − 575. |
[47] |
YU Feifei, LOU Lijuan, TIAN Miaomiao, et al. ESCRT-I component VPS23A affects ABA signaling by recognizing ABA receptors for endosomal degradation [J]. Molecular Plant, 2016, 9(12): 1570 − 1582. |
[48] |
YU Feifei, CAO Xiaoqiang, LIU Guangchao, et al. ESCRT-Ⅰ component VPS23A is targeted by E3 ubiquitin ligase XBAT35 for proteasome-mediated degradation in modulating ABA signaling [J]. Molecular Plant, 2020, 13(11): 1556 − 1569. |
[49] |
YU Feifei, XIE Qi. Non-26S proteasome endomembrane trafficking pathways in ABA signaling [J]. Trends in Plant Science, 2017, 22(11): 976 − 985. |
[50] |
LI Hongbo, LI Yingzhu, ZHAO Qiong, et al. The plant ESCRT component FREE1 shuttles to the nucleus to attenuate abscisic acid signalling [J]. Nature Plants, 2019, 5(5): 512 − 524. |
[51] |
LIU Chuanliang, SHEN Wenjin, YANG Chao, et al. Knowns and unknowns of plasma membrane protein degradation in plants [J]. Plant Science, 2018, 272: 55 − 61. |
[52] |
BELDA-PALAZON B, GONZALEZ-GARCIA M P, LOZANO-JUSTE J, et al. PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(50): E11857 − E11863. |
[53] |
IRIGOYEN M L, INIESTO E, RODRIGUEZ L, et al. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis [J]. Plant Cell, 2014, 26(2): 712 − 728. |
[54] |
CARDONA-LÓPEZ X, CUYAS L, MARÍN E, et al. ESCRT-Ⅲ-associated protein ALIX mediates high-affinity phosphate transporter [J]. Plant Cell, 2015, 27(9): 2560 − 2581. |
[55] |
WANG Fei, YANG Yan, WANG Zhe, et al. A critical role of Lyst-Interacting Protein 5, a positive regulator of multivesicular body biogenesis, in plant responses to heat and salt stresses [J]. Plant Physiology and Biochemistry, 2015, 169(1): 497 − 511. |
[56] |
XIA Zongliang, HUO Yongjin, WEI Yangyang, et al. The Arabidopsis LYST INTERACTING PROTEIN 5 acts in regulating abscisic acid signaling and drought response [J/OL]. Frontiers in Plant Science, 2016, 7: 758[2024-01-28]. doi: 10.3389/fpls.2016.00758. |
[57] |
HO L W, YANG T T, SHIEH S S, et al. Reduced expression of a vesicle trafficking-related ATPase SKD1 decreases salt tolerance in Arabidopsis [J]. Functional Plant Biology, 2010, 37: 962 − 973. |
[58] |
QADIR M, OSTER J D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture [J]. Science of the Total Environment, 2004, 323(1/3): 1 − 19. |
[59] |
DEINLEIN U, STEPHAN A B, HORIE T, et al. Plant salt-tolerance mechanisms [J]. Trends in Plant Science, 2014, 19(6): 371 − 379. |
[60] |
ZHAO Shuangshuang, ZHANG Qikun, LIU Mingyue, et al. Regulation of plant responses to salt stress [J/OL]. International Journal of Molecular Sciences, 2021, 22(9): 4609[2024-01-28]. doi: 10.3390/ijms22094609. |
[61] |
GONG Zhizhong, XIONG Liming, SHI Huazhong, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China Life Sciences, 2020, 63(5): 635 − 674. |
[62] |
YUE Yuesen, ZHANG Mingcai, ZHANG Jiachang, et al. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio [J]. Journal of Plant Physiology, 2012, 169(3): 255 − 261. |
[63] |
HUSSAIN S, HUSSAIN S, ALI B, et al. Recent progress in understanding salinity tolerance in plants: story of Na+/K+ balance and beyond [J]. Plant Physiology and Biochemistry, 2021, 160: 239 − 256. |
[64] |
YANG Yongqing, QIN Yunxia, XIE Changgen, et al. The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase [J]. Plant Cell, 2010, 22(4): 1313 − 1332. |
[65] |
YANG Yongqing, GUO Yan. Elucidating the molecular mechanisms mediating plant salt-stress responses [J]. New Phytologist, 2018, 217(2): 523 − 539. |
[66] |
YUAN Minhang, NGOU B P M, DING Pingtao, et al. PTI-ETI crosstalk: an integrative view of plant immunity [J/OL]. Current Opinion in Plant Biology, 2021, 62: 102030[2024-01-28]. doi: 10.1016/j.pbi.2021.102030. |
[67] |
PENG Yujun, WERSCH R V, ZHANG Yuelin. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity [J]. Molecular Plant Microbe Interactions, 2018, 31(4): 403 − 409. |
[68] |
SPALLEK T, BECK M, KHALED S B, et al. ESCRT-I mediates FLS2 endosomal sorting and plant immunity [J/OL]. PLoS Genetics, 2013, 9(12): e1004035[2024-01-28]. doi: 10.1371/journal.pgen.1004035. |
[69] |
WANG Mengxue, LUO Shuwei, FAN Baofang, et al. LIP5, a MVB biogenesis regulator, is required for rice growth [J/OL]. Frontiers in Plant Science, 2023, 14: 1103028[2024-01-28]. doi: 10.3389/fpls.2023.1103028. |
[70] |
PATHAK K B, NAGY P D. Defective interfering RNAs: foes of viruses and friends of virologists [J]. Viruses, 2009, 1(3): 895 − 919. |