[1] CHRISTENSEN S, ROUSK K. Global N2O emissions from our planet: which fluxes are affected by man, and can we reduce these? [J/OL]. iScience, 2024, 27 (2): 109042[2024-04-29]. doi: 10.1016/j.isci.2024.109042.
[2] JONES C M, SPOR A, BRENNAN F P, et al. Recently identified microbial guild mediates soil N2O sink capacity [J]. Nature Climate Change, 2014, 4: 801−805.
[3] PAN Baobao, ZHANG Yushu, XIA Longlong, et al. Nitrous oxide production pathways in Australian forest soils [J/OL]. Geoderma, 2022, 420 : 115871[2024-04-29]. doi: 10.1016/j.geoderma.2022.115871.
[4] HU Hangwei, CHEN Deli, HE Jizheng. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates [J]. FEMS Microbiology Reviews, 2015, 39(5): 729−749
[5] van LENT J, HERGOUALC’H K. VERCHOT L V. Reviews and syntheses: soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis [J]. Biogeosciences, 2015, 12(23): 7299−7313.
[6] 刘婷, 雷志刚, 陈述, 等. 亚热带森林转换对土壤氮转化关键功能微生物群落的影响[J]. 生态学报, 2024, 44(9): 3636−3647.

LIU Ting, LEI Zhigang, CHEN Shu, et al. Effects of subtropical forest conversion on key functional microbial communities of soil nitrogen transformation [J]. Acta Ecologica Sinica, 2024, 44(9): 3636−3647.
[7] ZHONG Yangquanwei, YAN Weiming, CANISARES L P, et al. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: evidence from a global meta-analysis [J]. Global Ecology and Biogeography, 2023, 32(1): 145−165.
[8] KUIPER L, de DEYN G B, THAKUR M P, et al. Soil invertebrate fauna affect N2O emissions from soil [J]. Global Change Biology, 2013, 19(9): 2814−2825.
[9] 左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3): 613−623.

ZUO Qianqian, WANG Shaojun. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil [J]. Journal of Zhejiang A&F University, 2021, 38(3): 613−623.
[10] ZHOU Yuting, MENG Delong, OSBORNE B, et al. The impact of modifications in forest litter inputs on soil N2O fluxes: a meta-analysis [J/OL]. Atmosphere, 2022, 13 (5): 742[2024-04-29]. doi: 10.3390/atmos13050742.
[11] de JONG W, LIU Jinlong, LONG Hexing. The forest restoration frontier [J]. Ambio, 2021, 50(12): 2224−2237.
[12] 张哲, 王邵军, 陈闽昆, 等. 西双版纳不同演替阶段热带森林土壤N2O排放的时间特征[J]. 生态环境学报, 2019, 28(4): 702−708.

ZHANG Zhe, WANG Shaojun, CHEN Minkun, et al. Temporal characteristics of soil N2O emission of different succession stages in Xishuangbanna tropical forests [J]. Ecology and Environmental Sciences, 2019, 28(4): 702−708.
[13] 张庆晓, 陈珺, 朱向涛, 等. 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应[J]. 浙江农林大学学报, 2021, 38(4): 703−711.

ZHANG Qingxiao, CHEN Jun, ZHU Xiangtao, et al. On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 703−711.
[14] DUAN Beixing, CAI Tijiu, MAN Xiuling, et al. Different variations in soil CO2, CH4, and N2O fluxes and their responses to edaphic factors along a boreal secondary forest successional trajectory [J/OL]. Science of the Total Environment, 2022, 838 (1): 155983[2024-04-29]. doi: 10.1016/j.scitotenv.2022.155983.
[15] CARANTO J D, VILBERT A C, LANCASTER K M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51): 14704−14709.
[16] KITS K D, JUNG M Y, VIERHEILIG J L, et al. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata [J/OL]. Nature Communications, 2019, 10 (1): 1836[2024-04-29]. doi: 10.1038/s41467-019-09790-x.
[17] MARTIKAINEN P J. Heterotrophic nitrification: an eternal mystery in the nitrogen cycle [J/OL]. Soil Biology and Biochemistry, 2022, 168 : 108611[2024-04-29]. doi: 10.1016/j.soilbio.2022.108611.
[18] MAEDA K, SPOR A, EDEL-HERMANN V, et al. N2O production, a widespread trait in fungi [J/OL]. Scientific Reports, 2015, 5 : 9697[2024-04-29]. doi: 10.1038/srep09697.
[19] ZHU Tongbin, MENG Tianzhu, ZHANG Jinbo, et al. Fungi dominant heterotrophic nitrification in a subtropical forest soil of China [J]. Journal of Soils and Sediments, 2015, 15(3): 705−709.
[20] ZHANG Yanchen, ZHANG Jinbo, MENG Tianzhu, et al. Heterotrophic nitrification is the predominant NO3 production pathway in acid coniferous forest soil in subtropical China [J]. Biology and Fertility of Soils, 2013, 49: 955−957.
[21] GAO Wenlong, FAN Changhua, ZHANG Wen, et al. Heterotrophic nitrification of organic nitrogen in soils: process, regulation, and ecological significance [J]. Biology and Fertility of Soils, 2023, 59: 261−274.
[22] ZHANG Yi, WANG Jing, DAI Shenyan, et al. The effect of C∶N ratio on heterotrophic nitrification in acidic soils [J/OL]. Soil Biology and Biochemistry, 2019, 137 : 107562[2024-04-29]. doi: 10.1016/j.soilbio.2019.107562.
[23] LOURENÇO K S, de ASSIS COSTA O Y, CANTARELLA H, et al. Ammonia-oxidizing bacteria and fungal denitrifier diversity are associated with N2O production in tropical soils [J/OL]. Soil Biology and Biochemistry, 2022, 166 : 108563[2024-04-29]. doi: 10.1016/j.soilbio.2022.108563.
[24] LI Zhaolei, TANG Ze, SONG Zhaopeng, et al. Variations and controlling factors of soil denitrification rate [J]. Global Change Biology, 2022, 28(6): 2133−2145.
[25] WRAGE-MÖNNIG N, HORN M A, WELL R, et al. The role of nitrifier denitrification in the production of nitrous oxide revisited [J/OL]. Soil Biology and Biochemistry, 2018, 123 : A3−A16[2024-04-29]. doi: 10.1016/j.soilbio.2018.03.020.
[26] ZHU-BARKER X, BURGER M, DOANE T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6328−6333.
[27] JIANG Jun, WANG Yingping, ZHANG Hao, et al. Contribution of litter layer to greenhouse gas fluxes between atmosphere and soil varies with forest succession [J/OL]. Forests, 2022, 13 (4): 544[2024-04-29]. doi: 10.3390/f13040544.
[28] GAO Jinbo, ZHOU Wenjun, LIU Yuntong, et al. Effects of litter inputs on N2O emissions from a tropical rainforest in southwest China [J]. Ecosystems, 2018, 21(5): 1013−1026.
[29] 石佳竹, 许涵, 林明献, 等. 海南尖峰岭热带山地雨林凋落物产量及其动态[J]. 植物科学学报, 2019, 37(5): 593−601.

SHI Jiazhu, XU Han, LIN Mingxian, et al. Dynamics of litterfall production in the tropical mountain rainforest of Jianfengling, Hainan Island, China [J]. Plant Science Journal, 2019, 37(5): 593−601.
[30] 熊壮, 叶文, 张树斌, 等. 西双版纳热带季节雨林与橡胶林凋落物的持水特性[J]. 浙江农林大学学报, 2018, 35(6): 1054−1061.

XIONG Zhuang, YE Wen, ZHANG Shubin, et al. Water-holding capacity in forest litter of a seasonal tropical rainforest and a rubber plantation of Xishuangbanna in Southwest China [J]. Journal of Zhejiang A&F University, 2018, 35(6): 1054−1061.
[31] LIU Xiaodong, FENG Yingjie, ZHAO Xinyu, et al. Climatic drivers of litterfall production and its components in two subtropical forests in South China: a 14-year observation [J/OL]. Agricultural and Forest Meteorology, 2024, 344 : 109798[2024-04-29]. doi: 10.1016/j.agrformet.2023.109798.
[32] 冉松松, 许子君, 万晓华. 不同林龄的天然次生林和杉木人工林恢复过程中凋落物量变化[J]. 福建农业科技, 2022, 53(1): 59−65.

RAN Songsong, XU Zijun, WAN Xiaohua. Changes of litterfall amount in natural secondary forests and Chinese fir plantations of different forest ages during the restoration process [J]. Fujian Agricultural Science and Technology, 2022, 53(1): 59−65.
[33] 李非凡, 孙冰, 裴男才, 等. 粤北3种林分凋落叶-根系-土壤生态化学计量特征[J]. 浙江农林大学学报, 2020, 37(1): 18−26.

LI Feifan, SUN Bing, PEI Nancai, et al. Characteristics of litter-root-soil ecological stoichiometry of three forest stands in northern Guangdong [J]. Journal of Zhejiang A&F University, 2020, 37(1): 18−26.
[34] LEITNER S, SAE-TUN O, KRANZINGER L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest [J]. Plant and Soil, 2016, 403(1/2): 455−469.
[35] 武启骞, 王传宽, 张全智. 6种温带森林凋落量年际及年内动态[J]. 生态学报, 2017, 37(3): 760−769.

WU Qiqian, WANG Chuankuan, ZHANG Quanzhi. Inter-and intra-annual dynamics in litter production for six temperate forests [J]. Acta Ecologica Sinica, 2017, 37(3): 760−769.
[36] BAI Zhenzhi, YANG Gang, CHEN Huai, et al. Nitrous oxide fluxes from three forest types of the tropical mountain rainforests on Hainan Island, China [J]. Atmospheric Environment, 2014, 92 : 469−477.
[37] ZHOU Wenjun, JI Hongli, ZHU Jing. et al. The effects of nitrogen fertilization on N2O emissions from a rubber plantation [J/OL]. Scientific Reports, 2016, 6 : 28230[2024-04-29]. doi: 10.1038/srep28230.
[38] 徐睿, 姜春前, 白彦锋, 等. 杉木纯林和混交林土壤温室气体通量的差异[J]. 浙江农林大学学报, 2019, 36(2): 307−317.

XU Rui, JIANG Chunqian, BAI Yanfeng, et al. Soil greenhouse gas fluxes in pure and mixed stands of Chinese fir [J]. Journal of Zhejiang A&F University, 2019, 36(2): 307−317.
[39] 李海防, 段文军. 华南地区典型人工林土壤二氧化碳和氧化亚氮通量研究[J]. 浙江农林大学学报, 2011, 28(1): 26−32.

LI Haifang, DUAN Wenjun. Soil CO2 and N2O fluxes from four typical plantations in Southern China [J]. Journal of Zhejiang A&F University, 2011, 28(1): 26−32.
[40] WU Bin, MU Changcheng. Effects on greenhouse gas (CH4, CO2, N2O) emissions of conversion from over-mature forest to secondary forest and Korean pine plantation in northeast China [J/OL]. Forests, 2019, 10 (9): 788[2024-04-29]. doi: 10.3390/f10090788.
[41] YANG Jing, WU Fuzhong, WEI Xinyu, et al. Global positive effects of litter inputs on soil nitrogen pools and fluxes [J]. Ecosystems, 2022, 26(4): 860−872.
[42] ZHENG Xiang, WANG Shuli, XU Xingtong, et al. Soil N2O emissions increased by litter removal but decreased by phosphorus additions [J]. Nutrient Cycling in Agroecosystems, 2022, 123(1): 49−59.
[43] 张玉铭, 邢力, 李晓欣, 等. 作物根系对根际土壤N2O产生与排放的调控机制研究进展[J]. 中国生态农业学报, 2023, 31(8): 1322−1329.

ZHANG Yuming, XING Li, LI Xiaoxin, et al. Research progress on the regulatory mechanisms of crop roots on N2O production and emissions in rhizosphere soil [J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1322−1329.
[44] LALNUNZIRA C, BREARLEY F Q, TRIPATHI S K. Root growth dynamics during recovery of tropical mountain forest in north-east India [J]. Journal of Mountain Science, 2019, 16(10): 2335−2347.
[45] 宋尊荣, 秦佳双, 李明金, 等. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 149−156.

SONG Zunrong, QIN Jiashuang, LI Mingjin, et al. Study on root biomass of Pinus massoniana plantations in subtropical China [J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(1): 149−156.
[46] 曹丽荣, 陈蓉, 陈铭, 等. 中亚热带常绿阔叶林不同演替阶段细根生物量变化[J]. 亚热带资源与环境学报, 2023, 18(1): 34−40.

CAO Lirong, CHEN Rong, CHEN Ming, et al. Root biomass of mid-subtropical evergreen broad-leaved forest during natural succession [J]. Journal of Subtropical Resources and Environment, 2023, 18(1): 34−40.
[47] 李非凡, 裴男才, 施招婉, 等. 次生林和人工林根系生物量、形态特征、养分及其与土壤养分关系[J]. 生态环境学报, 2019, 28(12): 2349−2355.

LI Feifan, PEI Nancai, SHI Zhaowan, et al. Relationships between soil nutrients and root biomass, morphological traits and nutrients for secondary forests and plantations [J]. Ecology and Environmental Sciences, 2019, 28(12): 2349−2355.
[48] 赵金龙, 王泺鑫, 韩海荣, 等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J]. 生态学报, 2014, 34 (23) : 7026−7037.

ZHAO Jinlong, WANG Luoxin, HAN Hairong, et al. Biomass and spatial distribution characteristics of Pinus tabulaeformis natural secondary forest at different age groups in the Liaoheyuan Nature Reserve, Hebei Province [J] Acta Ecologica Sinica, 2014, 34 (23): 7026−7037.
[49] 张云宇, 孙晓凤, 张临峰, 等. 帽儿山温带落叶阔叶林细根生物量、生产力和周转率[J]. 应用生态学报, 2021, 32(9): 3053−3060.

ZHANG Yunyu, SUN Xiaofeng, ZHANG Linfeng, et al. Fine root biomass, production, and turnover rate in a temperate deciduous broadleaved forest in the Maoer Mountain, China [J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3053−3060.
[50] ZHANG Quanzhi, WANG Chuankuan, ZHOU Zhenghu. Does the net primary production converge across six temperate forest types under the same climate? [J]. Forest Ecology and Management, 2019, 448: 535−542.
[51] COSKUN D, BRITTO D T, SHI Weiming, et al. How plant root exudates shape the nitrogen cycle [J]. Trends in Plant Science, 2017, 22(8): 661−673.
[52] BARNEZE A S, PETERSEN S O, ERIKSEN J, et al. Belowground links between root properties of grassland species and N2O concentration across the topsoil profile [J/OL]. Soil Biology and Biochemistry, 2024, 196 : 109498[2024-04-29]. doi: 10.1016/j.soilbio.2024.109498.
[53] SHEN Yawen, FENG Jiguang, ZHOU Daiyang, et al. Impacts of aboveground litter and belowground roots on soil greenhouse gas emissions: evidence from a DIRT experiment in a pine plantation [J/OL]. Agricultural and Forest Meteorology, 2023, 343 : 109792[2024-04-29]. doi: 10.1016/j.agrformet.2023.109792.
[54] 蔡银美, 张成富, 赵庆霞, 等. 模拟根系分泌物输入对森林土壤氮转化的影响研究综述[J]. 浙江农林大学学报, 2021, 38(5): 916−925.

CAI Yinmei, ZHANG Chengfu, ZHAO Qingxia, et al. Effect of simulated root exudates input on soil nitrogen transformation: a review [J]. Journal of Zhejiang A&F University, 2021, 38(5): 916−925.
[55] 庄姗, 林伟, 丁军军, 等. 不同根系分泌物对土壤N2O排放及同位素特征值的影响[J]. 中国农业科学, 2020, 53(9): 1860−1873.

ZHUANG Shan, LIN Wei, DING Junjun, et al. Effects of different root exudates on soil N2O emissions and isotopic signature [J]. Scientia Agricultura Sinica, 2020, 53(9): 1860−1873.
[56] LU Yufang, WANG Fangjia, MIN Ju, et al. Biological mitigation of soil nitrous oxide emissions by plant metabolites [J/OL]. Global Change Biology, 2024, 30 (5): 17333[2024-04-29]. doi: 10.1111/gcb.17333.
[57] LEVY-BOOTH DJ, PRESCOTT C E, GRAYSTON S J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems [J]. Soil Biology and Biochemistry, 2014, 75: 11−25.
[58] 王明柳, 曹乾斌, 陆梅, 等. 热带森林恢复过程中氨氧化细菌群落的季节变化[J]. 应用生态学报, 2024, 35(5): 1242−1250.

WANG Mingliu, CAO Qianbin, LU Mei, et al. Seasonal changes of ammonia-oxidizing bacterial communities during tropical forest restoration [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1242−1250.
[59] 邓米林, 林永新, 叶桂萍, 等. 林分类型对亚热带森林土壤团聚体中真菌反硝化微生物丰度的影响[J]. 福建师范大学学报(自然科学版), 2024, 40(1): 45−51, 68.

DENG Milin, LIN Yongxin, YE Guiping, et al. Effects of forest types on the abundance of fungal denitrifiers in soil aggregates from a subtropical forest [J]. Journal of Fujian Normal University (Natural Science Edition), 2024, 40(1): 45−51, 68.
[60] 陈秀波, 段文标, 陈立新, 等. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77−86.

CHEN Xiubo, DUAN Wenbiao, CHEN Lixin, et al. Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 77−86.
[61] ZHANG Yakun, PENG Sai, CHEN Xinli, et al. Plant diversity increases the abundance and diversity of soil fauna: a meta-analysis [J/OL]. Geoderma, 2022, 411 : 115694[2024-04-29]. DOI: 10.1016/j. geoderma. 2022.115694.
[62] LUBBERS I M, van GROENIGEN K J, FONTE S J, et al. Greenhouse-gas emissions from soils increased by earthworms [J]. Nature Climate Change, 2013, 3: 187−194.
[63] ŠUSTR V, ŠIMEK M, FAKTOROVÁ L, et al. Release of greenhouse gases from millipedes as related to food, body size, and other factors [J/OL]. Soil Biology and Biochemistry, 2020, 144 : 107765[2024-04-29]. DOI: 10.1016/j.soilbio.2020.107765.
[64] SHEN Haoyang, SHIRATORI Y, OHTA S, et al. Mitigating N2O emissions from agricultural soils with fungivorous mites [J]. The Isme Journal, 2021, 15(8): 2427−2439.
[65] LI Zhaolei , ZENG Zhaoqi, TIAN Dashuan, et al. Global patterns and controlling factors of soil nitrification rate [J]. Global Change Biology, 2020, 26 (7): 4147−4157.
[66] ZHANG Kerou, ZHU Qiuan, LIU Jinxun, et al. Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems [J]. Agricultural and Forest Meteorology, 2019, 266: 129−139.
[67] DAI Zhongmin, YU Mengjie, CHEN Huaihai, et al. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems [J]. Global Change Biology, 2020, 26(9): 5267−5276.
[68] DYMOV A A, STARTSEV V V. Changes in the temperature regime of podzolic soils in the course of natural forest restoration after clearcutting [J]. Eurasian Soil Science, 2016, 49(5): 551−559.
[69] 孙海龙, 张彦东, 吴世义. 东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量[J]. 生态学报, 2013, 33(17): 5320−5328.

SUN Hailong, ZHANG Yandong, WU Shiyi. Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China [J]. Acta Ecologica Sinica, 2013, 33(17): 5320−5328.
[70] ZHAO Xinyu, ZHANG Weiqiang, FENG Yingjie, et al. Soil organic carbon primarily control the soil moisture characteristic during forest restoration in subtropical China [J/OL]. Frontiers in Ecology and Evolution, 2022, 10 [2024-04-29]. DOI: 10.3389/fevo.2022.1003532.
[71] SCHAUFLER G, KITZLER B, SCHINDLBACHER A, et al. Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature [J]. European Journal of Soil Science, 2010, 61: 683−696.
[72] 高洁, 朱思佳, 高人, 等. 有机碳源对森林土壤真菌/细菌活性产生的N2O通量的影响[J]. 亚热带资源与环境学报, 2016, 11(4): 29−36.

GAO Jie, ZHU Sijia, GAO Ren, et al. Effects of exogenous organic carbons on N2O emissions attributable to forest soil fungal/bacterial activities [J]. Journal of Subtropical Resources and Environment, 2016, 11(4): 29−36.
[73] WANG Shaojun, ZUO Qianqian, CAO Qianbin, et al. Acceleration of soil N2O flux and nitrogen transformation during tropical secondary forest succession after slash-and-burn agriculture [J/OL]. Soil & Tillage Research, 2021, 208 : 104868[2024-04-29]. DOI: 10.1016/j.still.2020.104868.
[74] LIAO Jiayuan, LUO Qiqi, HU Ang, et al. Soil moisture-atmosphere feedback dominates land N2O nitrification emissions and denitrification reduction [J]. Global Change Biology, 2022, 28(21): 6404−6418.
[75] BALAINE N, CLOUGH T J, BEARE M B, et al. Changes in relative gas diffusivity explain soil nitrous oxide flux dynamics [J]. Soil Science Society of America Journal, 2013, 77(5): 1496−1505.
[76] SPOHN M, STENDAHL J. Soil carbon and nitrogen contents in forest soils are related to soil texture in interaction with pH and metal cations [J/OL]. Geoderma, 2024, 441 : 116746[2024-04-29]. DOI: 10.1016/j.geoderma.2023.116746.
[77] MANGALASSERY S, SJÖGERSTEN, SPARKES D L, et al. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases [J]. Soil and Tillage Research, 2013, 132: 39−46.
[78] LIE Zhiyang, HUANG Wenjuan, ZHOU Guoyi, et al. Acidity of soil and water decreases in acid-sensitive forests of tropical China [J]. Environmental Science & Technology, 2023, 57(30): 11075−11083.
[79] 余雅迪, 张茜, 王皓, 等. 土壤二氧化碳及氧化亚氮排放对毛竹扩张的响应及机制[J]. 浙江农林大学学报, 2024, 41 (3): 659−668.

YU Yadi, ZHANG Xi, WANG Hao, et al. Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism [J]. Journal of Zhejiang A&F University, 2024, 41 (3): 659−668.
[80] SHAABAN M, WU Yupeng, KHALID M S, et al. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes [J]. Environmental Pollution, 2018, 235 : 625−631.
[81] HE Tiehu, DING Weixin, CHENG Xiaoli, et al. Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions [J/OL]. Nature Communications, 2024, 15 (1): 2668[2024-04-29]. DOI: 10.1038/s41467-024-46991-5.
[82] 解玲玲, 王邵军, 肖博, 等. 土壤碳库积累与分配对热带森林恢复的响应[J]. 生态学报, 2023, 43(23): 9877−9890.

XIE Lingling, WANG Shaojun, XIAO Bo, et al. Responses of soil carbon component accumulation and allocation to tropical forest restoration [J]. Acta Ecologica Sinica, 2023, 43(23): 9877−9890.
[83] GUENET B, GABRIELLE B, CHENU C, et al. Can N2O emissions offset the benefits from soil organic carbon storage? [J]. Global Change Biology, 2021, 27(2): 237−256.
[84] STUCHINER E R, von FISCHER J C. Using isotope pool dilution to understand how organic carbon additions affect N2O consumption in diverse soils [J]. Global Change Biology, 2022, 28(13): 4163−4179.
[85] CAI Xiaoqing, LIN Ziwen, PENTTINEN P, et al. Effects of conversion from a natural evergreen broadleaf forest to a moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area [J]. Forest Ecology and Management, 2018, 422: 161−171.
[86] 曹善郅, 周家树, 张少博, 等. 生物质炭基尿素和普通尿素对毛竹林土壤氧化亚氮通量的影响[J]. 浙江农林大学学报, 2023, 40(1): 135−144.

CAO Shanzhi, ZHOU Jiashu, ZHANG Shaobo, et al. Effects of biochar-based urea and common urea on soil N2O flux in Phyllostachys edulis forest soil [J]. Journal of Zhejiang A&F University, 2023, 40(1): 135−144.
[87] ZHANG Huiling, DENG Qi, SCHADT C W, et al. Precipitation and nitrogen application stimulate soil nitrous oxide emission [J]. Nutrient Cycling in Agroecosystems, 2021, 120(13): 363−378.
[88] ZHU Xiaoye, FANG Xi, WANG Liufang, et al. Regulation of soil phosphorus availability and composition during forest succession in subtropics [J/OL]. Forest Ecology and Management, 2021, 502 : 119706[2024-04-29]. doi.org/10.1016/j.foreco.2021.119706.
[89] SHEN Yawen, ZHU Biao. Effects of nitrogen and phosphorus enrichment on soil N2O emission from natural ecosystems: A global meta-analysis [J/OL]. Environmental Pollution, 2022, 301 : 118993[2024-04-29]. DOI: 10.1016/j.envpol.2022.118993.
[90] LI Zhiguo, LI Linyang, XIA Shujie, et al. K fertilizer alleviates N2O emissions by regulating the abundance of nitrifying and denitrifying microbial communities in the soil-plant system [J/OL]. Journal of Environmental Management, 2021, 291 : 112579[2024-04-29]. DOI: 10.1016/j.jenvman.2021.112579.
[91] 夏淑洁, 刘闯, 袁晓良, 等. 不同氮钾水平及氮形态差异对土壤氨挥发和氧化亚氮排放的影响[J]. 农业环境科学学报, 2020, 39(5): 1122−1129.

XIA Shujie, LIU Chuang, YUAN Xiaoliang, et al. Effects of different nitrogen and potassium levels and nitrogen forms on soil ammonia volatilization and nitrous oxide emissions [J]. Journal of Agro-Environment Science, 2020, 39(5): 1122−1129.