[1] SHABALA S, WU Honghong, BOSE J. Salt stress sensing and early signalling events in plant roots: current knowledge and hypothesis [J]. Plant Science, 2015, 241: 109−119.
[2] 杨明, 赵兰勇. 山东平阴玫瑰种质资源调查研究及类型划分[J]. 中国园林, 2003, 19(7): 61−63.

YANG Ming, ZHAO Lanyong. Research and classification on the germplasm resources of the Pingyin rugose rose in Shandong Province [J]. Journal of Chinese Landscape Architecture, 2003, 19(7): 61−63.
[3] 徐勇, 马远潇, 梁悦, 等. 玫瑰花瓣表皮分泌细胞的显微观察及其与精油含量的关系[J]. 江苏农业科学, 2024, 52(24): 148−155.

XU Yong, MA Yuanxiao, LIANG Yue, et al. Microscopic observation of epidermal secretory cells of Rosa rugosapetals and their relationship with essential oil content [J]. Jiangsu Agricultural Sciences, 2024, 52(24): 148−155.
[4] WANG Jianwen, LIANG Yue, CHU Yadong, et al. BOX38, a DNA marker for selection of essential oil yield of Rosa × rugosa[J/OL]. Biomolecules, 2023, 13(3): 439[2025-08-01]. DOI: 10.3390/biom13030439.
[5] XU Yong, SHI Yuqing, ZHANG Weijie, et al. C2H2 zinc finger protein family analysis of Rosa rugosa identified a salt-tolerance regulator, RrC2H2-8[J/OL]. Plants, 2024, 13(24): 3580[2025-08-01]. DOI: 10.3390/plants13243580.
[6] 杨志莹, 赵兰勇, 徐宗大. 盐胁迫对玫瑰生长和生理特性的影响[J]. 应用生态学报, 2011, 22(8): 1993−1998.

YANG Zhiying, ZHAO Lanyong, XU Zongda. Impacts of salt stress on the growth and physiological characteristics of Rosa rugosa [J]. Chinese Journal of Applied Ecology, 2011, 22(8): 1993−1998.
[7] 李雪剑. 玫瑰种质耐盐性评价及响应盐胁迫的关键基因筛选[D]. 泰安: 山东农业大学, 2022.

LI Xuejian. Salt Tolerance Evaluation of Rosa rugosa Germplasm and Key Genes Screening in Response to Salt Stress[D]. Tai’an: Shandong Agricultural University, 2022.
[8] 牛若宇, 高瞻, 熊显鹏, 等. 棉花野生种质资源的育种应用研究与前景[J]. 生物技术通报, 2025, 41(4): 21−32.

NIU Ruoyu, GAO Zhan, XIONG Xianpeng, et al. Breeding applications and prospects of wild cotton germplasm resources [J]. Biotechnology Bulletin, 2025, 41(4): 21−32.
[9] ZENDA T, LIU Songtao, DONG Anyi, et al. Omics-facilitated crop improvement for climate resilience and superior nutritive value[J/OL]. Frontiers in Plant Science, 2021, 12: 774994[2025-08-01]. DOI: 10.3389/fpls.2021.774994.
[10] 乔东亚, 王鹏, 王淑安, 等. 基于SNP标记的紫薇遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 21−28.

QIAO Dongya, WANG Peng, WANG Shu’an, et al. Genetic diversity analysis of Lagerstroemia germplasm resources based on SNP markers [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 21−28.
[11] 欧哲, 杨宇, 冯策婷, 等. 单叶蔷薇远缘杂交中花粉管生长的荧光显微观察[J]. 东北农业大学学报, 2022, 53(10): 18−26.

OU Zhe, YANG Yu, FENG Ceting, et al. Fluorescent microscope observation on growth of pollen tube on distant hybridization in Rosa persica [J]. Journal of Northeast Agricultural University, 2022, 53(10): 18−26.
[12] 王涛, 蒙仲举, 张佳鹏, 等. NaCl胁迫对紫穗槐幼苗生长及生理特性的影响[J]. 西北林学院学报, 2021, 36(1): 25−30.

WANG Tao, MENG Zhongju, ZHANG Jiapeng, et al. Effects of NaCl stress on the growth and physiological characteristics of Amorpha fruticosa seedlings [J]. Journal of Northwest Forestry University, 2021, 36(1): 25−30.
[13] LIU Dan, LIU Kun, TONG Boqiang, et al. Telomere-to-telomere, gap-free assembly of the Rosa rugosa reference genome[J/OL]. Horticultural Plant Journal, 2024[2025-08-01]. DOI: 10.1016/j.hpj.2024.06.005.
[14] ZHOU Yong, KATHIRESAN N, YU Zhichao, et al. A high-performance computational workflow to accelerate GATK SNP detection across a 25-genome dataset[J/OL]. BMC Biology, 2024, 22(1): 13[2025-08-01]. DOI: 10.1186/s12915-024-01820-5.
[15] LI Heng, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2009, 25(14): 1754−1760.
[16] van ZELM E, ZHANG Yanxia, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403−433.
[17] ZHU Yanchun, LI Mengxia, WANG Tao, et al. Research advances of salt exclusion, salt sequestration, salt secretion, and salt signaling regulation in plants[J/OL]. Plant Stress, 2025, 17: 100952[2025-08-01]. DOI: 10.1016/j.stress.2025.100952.
[18] LIU Citao, MAO Bigang, ZHANG Yanxia, et al. The OsWRKY72-OsAAT30/OsGSTU26 module mediates reactive oxygen species scavenging to drive heterosis for salt tolerance in hybrid rice [J]. Journal of Integrative Plant Biology, 2024, 66(4): 709−730.
[19] 朱庆林, 王紫阳, 於朝广, 等. 盐胁迫下(落羽杉×墨西哥落羽杉)×墨西哥落羽杉回交子代根尖分生区Na+、K+流特征及QTL定位[J]. 植物资源与环境学报, 2025, 34(4): 1−8, 22.

ZHU Qinlin, WANG Ziyang, YU Chaoguang, et al. Characteristics and QTL mapping of Na+ and K+ flows in root apical meristem of backcross generations of (Taxodium distichum × T. mucronatum) × T. mucronatum under salt stress [J]. Journal of Plant Resources and Environment, 2025, 34(4): 1−8, 22.
[20] 洪森荣, 曾清华, 谭鑫, 等. 上饶早梨‘六月雪’和‘黄皮消’全基因组重测序分析[J]. 浙江农林大学学报, 2019, 36(2): 227−235.

HONG Senrong, ZENG Qinghua, TAN Xin, et al. Whole genome re-sequencing analysis of two cultivars ( ‘Liuyuexue’ and ‘Huangpixiao’) of Pyrus pyrifolia in Shangrao [J]. Journal of Zhejiang A&F University, 2019, 36(2): 227−235.
[21] MI Xiaozeng, QIAO Dahe, AN Yanlin, et al. Genome-wide association study of tea plant based on SLAF-seq revealed SNP variations regulating timing of bud flush[J/OL]. Plant Gene, 2025, 42: 100511[2025-08-01]. DOI: 10.1016/j.plgene.2025.100511.
[22] 文雁成, 何俊平, 蔡东芳, 等. 基于全基因组重测序技术的甘蓝型油菜光叶突变体基因定位[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 497−506.

WEN Yancheng, HE Junping, CAI Dongfang, et al. Gene mapping of a novel glossy mutant in Brassica napus L. based on whole genome resequencing technology [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 497−506.
[23] CHENG Yuanhang, WANG Tao, WEN Yeying, et al. Genetic variation and assessment of seven salt-tolerance genes in an indica/Xian rice population[J/OL]. Agronomy, 2025, 15(3): 570[2025-08-01]. DOI: 10.3390/agronomy15030570.
[24] MCCARTHY M I, ABECASIS G R, CARDON L R, et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges [J]. Nature Reviews. Genetics, 2008, 9(5): 356−369.
[25] 刘飞, 黄娟, 杜千禧, 等. 苦荞重组自交系的RS和GABA的QTL定位及候选基因分析[J]. 浙江农林大学学报, 2025, 42(4): 703−713.

LIU Fei, HUANG Juan, DU Qianxi, et al. QTL mapping and candidate gene analysis of RS and GABA based on the recombinant inbred lines(RILs) of Fagopyrum tataricum [J]. Journal of Zhejiang A&F University, 2025, 42(4): 703−713.