[1] WANG Limei, LI Maoteng, JIN Wenwen, et al. Variations in the components of Osmanthus fragrans Lour. essential oil at different stages of flowering [J]. Food Chemistry, 2009, 114(1): 233 − 236.
[2] WU Lichen CHANG Lihui, CHEN Sihan, et al. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: a potential natural and functional food flavor additive [J]. LWT-Food Science and Technology, 2009, 42(9): 1513 − 1519.
[3] CAI Xuan, MAI Rongzhang, ZOU Jingjing, et al. Analysis of aroma-active compounds in three sweet osmanthus (Osmanthus fragrans) cultivars by GC-olfactometry and GC-MS [J]. Journal of Zhejiang University Science B (Biomedicine & Biotechnology), 2014, 15(7): 638 − 648.
[4] ZOU Jingjing, ZHOU Yuan, CAI Xuan, et al. Increase in DNA fragmentation and the role of ethylene and reactive oxygen species in petal senescence of Osmanthus fragrans [J]. Postharvest Biology and Technology, 2014, 93: 97 − 105.
[5] ZOU Jingjing, CAI Xuan, WANG Caiyun. The spatial and temporal distribution of programmed cell death (PCD) during petal senescence of Osmanthus fragrans [J]. Acta Horticulturae, 2017, 1185(39): 315 − 324.
[6] 向其柏, 刘玉莲. 中国桂花品种图志[M]. 杭州: 浙江科学技术出版社, 2008: 93 − 260.

XIANG Qibai, LIU Yulian. An Illustrated Monograph of the Sweet Osmanthus Cultivars in China [M]. Hangzhou: Zhejiang Science & Technology Press, 2008: 93 − 260.
[7] 周媛. 桂花花瓣衰老过程中细胞程序性死亡特征与机制研究[D]. 武汉: 华中农业大学, 2008.

ZHOU Yuan. Research on Characters and Mechanism of Programmed Cell Death (PCD) during the Petal Senescence in Osmanthus fragrans [D]. Wuhan: Huazhong Agricultural University, 2008.
[8] 林植芳, 李双顺, 林桂珠, 等. 衰老叶片和叶绿体中H2O2的累积与膜脂过氧化的关系[J]. 植物生理学报, 1988, 14(1): 16 − 22.

LIN Zhifang, LI Shuangshun, LIN Guizhu, et al. Relationship between H2O2 accumulation and membrane lipid peroxidation in senescent leaves and chloroplasts [J]. Physiology and Molecular Biology of Plants, 1988, 14(1): 16 − 22.
[9] YAMADA T, ICHIMURA K, van DOORN W G. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna [J]. Planta, 2007, 226(5): 1195 − 1205.
[10] 吴兰芳, 杨爱珍, 刘和, 等. 线粒体调控细胞凋亡的研究进展[J]. 中国农学通报, 2010, 26(8): 63 − 68.

WU Lanfang, YANG Aizhen, LIU He, et al. The study progress of apoptosis of regulation of mitochondrial [J]. Chinese Agricultural Science Bulletin, 2010, 26(8): 63 − 68.
[11] 赵云罡, 徐建兴. 线粒体, 活性氧和细胞凋亡[J]. 生物化学与生物物理进展, 2001, 28(2): 168 − 171.

ZHAO Yungang, XU Jianxing. Mitochondria, reactive oxygen species and apoptosis [J]. Progress in Biochemistry and Biophysics, 2001, 28(2): 168 − 171.
[12] ZHOU Yuan, WANG Caiyun CHENG Zhengwei. Effects of exogenous ethylene and ethylene inhibitor on longevity and petal senescence of sweet osmanthus [J]. Acta Horticulturae, 2008, 768: 487 − 493.
[13] YAMADA T, ICHIMURA K, van DOORN W G. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia [J] Journal of Experimental Botany, 2006, 57(14): 3543 − 3552.
[14] van DOORN W G, WOLTERING E J. Physiology and molecular biology of petal senescence [J]. Journal of Experimental Botany, 2008, 59(3): 453 − 480.
[15] AZAD A K, ISHIKAWA T, ISHIKAWA T, et al. Intracellular energy depletion triggers programmed cell death during petal senescence in tulip [J]. Journal of Experimental Botany, 2008, 59(8): 2085 − 2095.
[16] ROGERS H J. Is there an important role for reactive oxygen species and redox regulation during floral senescence? [J]. Plant Cell Environ, 2012, 35(2): 217 − 233.
[17] STEN O, BORIS Z, PIERLUIGI N. Regulation of cell death: the calcium- apoptosis link [J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 552 − 565.
[18] van AKEN O, van BREUSEGEM F. Licensed to kill: mitochondria, chloroplasts, and cell death [J]. Trends in Plant Science, 2015, 20(11): 754 − 766.
[19] van DOORN W G. Categories of petal senescence and abscission: a re-evaluation [J]. Annals of Botany, 2001, 87(4): 447 − 456.
[20] van DOORN W G. Effect of ethylene on flower abscission: a survey [J]. Annals of Botany, 2002, 89(6): 689 − 693.
[21] STEAD A D. Pollination-induced flower senescence: a review [J]. Plant Growth Regulation, 1992, 11(1): 13 − 20.
[22] LUANGSUWALAI K, KETSA S, van DOORN W G. Ethylene-regulated hastening of perianth senescence after pollination in Dendrobium flowers is not due to an increase in perianth ethylene production [J]. Postharvest Biology and Technology, 2011, 62(3): 338 − 341.
[23] SHIMIZU-YUMOTO H, ICHIMURA K. Effects of ethylene, pollination, and ethylene inhibitor treatments on flower senescence of gentians [J]. Postharvest Biology and Technology, 2012, 63(1): 111 − 115.
[24] 潘海春. 月季花发育过程中花瓣细胞程序化死亡机制研究[D]. 泰安: 山东农业大学, 2004.

PAN Haichun. Programmed Cell Death in Petal during Rose (Rosa×hybrida) Flower Development [D]. Tai’an: Shandong Agricultural University, 2004.
[25] ALEKSANDRUSHKINA N I, VANYUSHIN B F. Endonucleases and their involvement in plant apoptosis [J]. Russian Journal of Plant Physiology, 2009, 56(3): 291 − 305.
[26] WAGSTAFF C, MALCOLM P, RAFIQ A, et al. Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence [J]. New Phytologist, 2003, 160(1): 49 − 59.
[27] ARORA A, SINGH V P. Polyols regulate the flower senescence by delaying programmed cell death in Gladiolus [J]. Journal of Plant Biochemistry and Biotechnology, 2006, 15: 139 − 142.
[28] YAMADA T, ICHIMURA K, van DOOORN W G. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia [J]. Journal of Experimental Botany, 2006, 57(14): 3543 − 3552.
[29] YAMADA T, TAKATSU Y, KASUMI M, et al. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil) [J]. Planta, 2006, 224: 1279 − 1290.
[30] LANGSTON B J, BAI S, JONES M L. Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias [J]. Journal of Experimental Botany, 2005, 56(409): 15 − 23.
[31] ORZAEZ O, GRANELL A. DNA fragmentation is regulated by ethylene during carpel senescence in Pisum sativum [J]. The Plant Journal, 1997, 11(1): 137 − 144.