[1] DUTILLEUL P, HAN L W, VALLADARES F, et al. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data [J]. Front Plant Sci, 2015, 6: 172 − 184.
[2] LIU Shiliang, LUO Yiming, YANG Rongjie, et al. High resource-capture and -use efficiency, and effective antioxidant protection contribute to the invasiveness of Alnus formosana plants [J]. Plant Physiol Biochem, 2015, 96: 436 − 447.
[3] CALLAHAN H S. Shade-induced plasticity and its ecological significance in wild populations of Arabidopsis thaliana [J]. Ecology, 2002, 83(7): 1965 − 1980.
[4] MONTANARO G, DICHIO B, XILOYANNIS C. Shade mitigates photoinhibition and enhances water use efficiency in kiwi fruit under drought [J]. Photosynthetica, 2009, 47(3): 363 − 371.
[5] ZHANG Lixia, GUO Qiaosheng, CHANG Qingshan, et al. Chloroplast ultrastructure, photosynthesis and accumulation of secondary metabolites in Glechoma longitubain response to irradiance [J]. Photosynthetica, 2015, 53(1): 144 − 153.
[6] 梁娟, 郭泽宇, 叶漪. 不同土壤水分条件对七叶一枝花光合特性及有效成分皂苷含量的影响[J]. 植物生理学报, 2014, 50(1): 56 − 60.

LIANG Juan, GUO Zeyu, YE Yi. Effects of different soil moisture conditions on photosynthetic characteristics and effective content of saponin of Paris polyphylla [J]. J Plant Physiol, 2014, 50(1): 56 − 60.
[7] 曹永慧, 周本智, 陈双林. 弱光下水分胁迫对不同产地披针叶茴香幼苗生理特性的影响[J]. 生态学报, 2014, 34(4): 814 − 822.

CAO Yonghui, ZHOU Benzhi, CHEN Shuanglin. Effects of water stress on physiological characteristics of different Illicium lanceolatum ecotypes under low light intensity [J]. Acta Ecol Sin, 2014, 34(4): 814 − 822.
[8] 孙帅, 张小晶, 刘金平, 等. 遮阴和干旱对荩草生理代谢及抗性系统影响的协同作用[J]. 生态学报, 2018, 38(5): 1770 − 1779.

SUN Shuai, ZHANG Xiaojing, LIU Jinping, et al. Synergistic effects of shade and drought on the physiological metabolism and resistance system of Arthraxon hispidus [J]. Acta Ecol Sin, 2018, 38(5): 1770 − 1779.
[9] 赵丹丹, 马红媛, 李阳, 等. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6): 501 − 511.

ZHAO Dandan, MA Hongyuan, LI Yang, et al. Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis [J]. Chin J Plant Ecol, 2019, 43(6): 501 − 511.
[10] 马富举, 杨程, 张德奇, 等. 灌水模式对冬小麦光合特性、水分利用效率和产量的影响[J]. 应用生态学报, 2018, 29(4): 1233 − 1239.

MA Fuju, YANG Cheng, ZHANG Deqi, et al. Effects of irrigation regimes on photosynthesis, water use efficiency and grain yield in winter wheat [J]. Chin J Appl Ecol, 2018, 29(4): 1233 − 1239.
[11] FORCE L, CRITCHLEY C, RENSEN J J S. New fluorescence parameters for monitoring photosynthesis in plants [J]. Photosynth Res, 2003, 78: 17 − 33.
[12] HAZRATI S, TAHMASEBI-SARVESTANI Z, MODARRES-SANAVY S A M, et al. Effects of water stress and light intensity on chlorophyll fluorescenceparameters and pigments of Aloe vera L. [J]. Plant Physiol Biochem, 2016, 106: 141 − 148.
[13] 刘英, 雷少刚, 宫传刚, 等. 采煤沉陷裂缝影响下土壤含水量变化对柠条叶片叶绿素荧光响应的影响[J]. 生态学报, 2019, 39(9): 1 − 9.

LIU Ying, LEI Shaogang, GONG Chuangang, et al. Effects of soil water content change on the chlorophyll fluorescence response of Caragarca korshircskii leaves under the influence of coal mining subsidence cracks [J]. Acta Ecol Sin, 2019, 39(9): 1 − 9.
[14] 叶居新, 洪瑞川, 聂义如, 等. 芒萁植株浸出液对几种植物生长的影响[J]. 植物生态学与地植物学学报, 1987, 11(3): 45 − 53.

YE Juxin, HONG Ruichuan, NIE Yiru, et al. The effect of the maceration extract of Dicranopteris dichotoma on the growth of several plant species [J]. Acta Phytoecol Geobot Sin, 1987, 11(3): 45 − 53.
[15] 钱崇澍, 陈焕镛. 中国植物志: 第2卷[M]. 北京: 科学出版社, 1959: 116 − 121.
[16] CHEN Zhiqiang, CHEN Zhibiao, YAN Xinyu, et al. Stoichiometric mechanisms of Dicranopteris dichotoma growth and resistance to nutrient limitation in the zhuxi watershed in the red soil hilly region of China [J]. Plant Soil, 2016, 398(1): 367 − 379.
[17] 王敬哲, 陈志强, 陈志彪, 等. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应[J]. 生态学报, 2020, 40(3): 1 − 10.

WANG Jingzhe, CHEN Zhiqiang, CHEN Zhibiao, et al. Response of functional traits of Dicrarcopteris dichotoma leaves to soil factors in different vegetation restoration years in red soil erosion area of Southern China [J]. Acta Ecol Sin, 2020, 40(3): 1 − 10.
[18] 张明如, 温国胜, 张汝民, 等. 千岛湖森林群落下层芒萁层片发育机理初步判断[J]. 内蒙古农业大学学报, 2010, 31(3): 28 − 34.

ZHANG Mingru, WEN Guosheng, ZHANG Rumin, et al. A study of development mechanisms of Dicranopteris dichotoma synusium of the forest communities in Thousands Lake [J]. J Inn Mong Agric Univ, 2010, 31(3): 28 − 34.
[19] 张明如, 何明, 温国胜, 等. 芒萁种群特征及其对森林更新影响评述[J]. 内蒙古农业大学学报, 2010, 31(4): 303 − 308.

ZHANG Mingru, HE Ming, WEN Guosheng, et al. The charateristics of Dicranopteris dichotoma population and its effects on the forest regeneration [J]. J Inn Mong Agric Univ, 2010, 31(4): 303 − 308.
[20] FARQUHAR G D, CAEMMERER S V, BERRY J A. Models of photosynthesis [J]. Plant Physiol, 2001, 125(1): 42 − 45.
[21] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444 − 448.

ZHANG Shouren. A discussion on chlorophyll fluorescence kinetics parameters and their significance [J]. Chin Bull Bot, 1999, 16(4): 444 − 448.
[22] 张建新, 方依秋, 丁彦芬, 等. 蕨类植物的叶绿素、光合参数与耐荫性[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 413 − 420.

ZHANG Jianxin, FANG Yiqiu, DING Yanfen, et al. Chlorophyll contents, photosynthetic parameters, and shade tolerance of ferns [J]. J Zhejiang Univ Agric Life Sci, 2011, 37(4): 413 − 420.
[23] 陈波, 金盛杨, 黄瑞建, 等. 浙江天童国家森林公园内几种蕨类植物的能量特征分析[J]. 浙江大学学报(理学版), 2010, 37(2): 214 − 220.

CHEN Bo, JIN Shengyang, HUANG Ruijian, et al. Energy analysis of several ferns in the Tiantong Nation Forest Park [J]. J Zhejiang Univ Sci Ed, 2010, 37(2): 214 − 220.
[24] 刘慧民, 马艳丽, 王柏臣, 等. 两种绣线菊耐弱光能力的光合适应性[J]. 生态学报, 2012, 32(23): 7519 − 7531.

LIU Huimin, MA Yanli, WANG Baichen, et al. Photosynthetic adaptability of the resistance ability to weak light of 2 species Spiraea L. [J]. Acta Ecol Sin, 2012, 32(23): 7519 − 7531.
[25] 殷东生, 沈海龙. 森林植物耐荫性及其形态和生理适应性研究进展[J]. 应用生态学报, 2016, 27(8): 2687 − 2698.

YIN Dongsheng, SHEN Hailong. Shade tolerance and the adaptability of forest plants in morphology and physiology: a review [J]. Chin J Appl Ecol, 2016, 27(8): 2687 − 2698.
[26] 金桂宏. 不同光照条件下芒萁的光合生理响应特征分析[D]. 杭州: 浙江农林大学, 2018.

JIN Guihong. The Photosynthetic Physiological Response of Dicranopteris dichotoma under different light conditions[D]. Hangzhou: Zhejiang A&F University, 2018.
[27] 陆燕元, 马焕成, 李昊民, 等. 土壤干旱对转基因甘薯光合曲线的响应[J]. 生态学报, 2015, 35(7): 2155 − 2160.

LU Yanyuan, MA Huancheng, LI Haomin, et al. Light response characteristics of photosynthetic of transgenic sweet potato under drought stress [J]. Acta Ecol Sin, 2015, 35(7): 2155 − 2160.
[28] 李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2002.
[29] 高杰, 张仁和, 王文斌, 等. 干旱胁迫对玉米苗期叶片光系统Ⅱ性能的影响[J]. 应用生态学报, 2015, 26(5): 1391 − 1396.

GAO Jie, ZHANG Renhe, WANG Wenbin, et al. Effects of drought stress on performance of photosystem Ⅱ in maize seedling stage [J]. Chin J Appl Ecol, 2015, 26(5): 1391 − 1396.
[30] ZIVCAK M, BRESTIC M, KALAJI H M, et al. Photosynthetic responses of sun- and shade-grown barley leaves to high light: is the lower PSⅡ connectivity in shade leaves associated with protection against excess of light? [J]. Photosynth Res, 2014, 119(3): 339 − 354.
[31] 刘佳, 杨永红, 郝引川, 等. 干旱胁迫和复水处理对玉米叶片光合电子传递特性的影响[J]. 植物生理学报, 2017, 53(10): 1877 − 1884.

LIU Jia, YANG Yonghong, HAO Yinchuan, et al. Effects of photosynthetic electron transport chain of maize leaves under drought stress and re-watering [J]. J Plant Physiol, 2017, 53(10): 1877 − 1884.
[32] 赵和丽, 杨再强, 王明田, 等. 高温高湿胁迫及恢复对番茄快速荧光诱导动力学的影响[J]. 生态学杂志, 2019, 38(8): 2405 − 2413.

ZHAO Heli, YANG Zaiqiang, WANG Mingtian, et al. Effects of high temperature and high humidity stress and restoration on the fast fluorescence induction dynamics of tomato leaves [J]. Chin J Ecol, 2019, 38(8): 2405 − 2413.
[33] 刘倩倩, 马寿宾, 冯希环, 等. 嫁接对高温和低温胁迫下辣椒幼苗快速叶绿素荧光诱导动力学特性的影响[J]. 园艺学报, 2016, 43(5): 885 − 896.

LIU Qianqian, MA Shoubin, FENG Xihuan, et al. Effects of grafting on the fast chlorophyll fluorescence induction dynamics of pepper seedlings under temperature stress [J]. Acta Hortic Sin, 2016, 43(5): 885 − 896.
[34] HOLLAND V, KOLLER S, BRÜGGEMANN W. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis [J]. Plant Biol, 2014, 16(4): 801 − 808.
[35] KROMDIJK J, GŁOWACKA K, LEONELLI L, et al. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection [J]. Plant Sci, 2016, 354: 857 − 861.
[36] MA Jing, LÜ Chunfang, XU Minli, et al. Analysis of chlorophyll a fluorescence and proteomic differences of rice leaves in response to photooxidation [J]. Acta Physiol Plant, 2017, 39(2): 39 − 46.
[37] 原佳乐, 马超, 冯雅岚, 等. 不同抗旱性小麦快速叶绿素荧光诱导动力学曲线对干旱及复水的响应[J]. 植物生理学报, 2018, 54(6): 1119 − 1129.

YUAN Jiale, MA Chao, FENG Yalan, et al. Response of chlorophyll fluorescence transient in leaves of wheats with different drought resistances to drought stresses and rehydration [J]. J Plant Physiol, 2018, 54(6): 1119 − 1129.
[38] STEFANOV D, PETKOVA V, DENEV I D. Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test [J]. Sci Hortic, 2011, 128(1): 1 − 6.