[1] 杨思睿, 薛朝辉, 张玲, 等.高光谱与LiDAR数据融合研究:以黑河中游张掖绿洲农业区精细作物分类为例[J].国土资源遥感, 2018, 30(4):33 - 40.http://d.old.wanfangdata.com.cn/Periodical/ygxx201406015

YANG Sirui, XUE Chaohui, ZHANG Ling, et al. Fusion of hyperspectral and LiDAR data: a case study of fine crop classification in Zhangye Oasis Agricultural Area in the middle reaches of the Heihe River[J]. Remote Sensing Land Resour, 2018, 30(4): 33 - 40.http://d.old.wanfangdata.com.cn/Periodical/ygxx201406015
[2] 舒田, 岳延滨, 李莉婕, 等.基于高光谱遥感的农作物识别[J].江苏农业学报, 2016, 32(6):1310 - 1314. doi: 10.3969/j.issn.1000-4440.2016.06.018

SHU Tian, YUE Yanbin, LI Lijie, et al. Crops identification based on hyperspectral remote sensing[J]. Jiangsu J Agric Sci, 2016, 32(6): 1310 - 1314. doi: 10.3969/j.issn.1000-4440.2016.06.018
[3] 陶江玥, 刘丽娟, 庞勇, 等.基于机载激光雷达和高光谱数据的树种识别方法[J].浙江农林大学学报, 2018, 35(2):314 - 323. doi: 10.11833/j.issn.2095-0756.2018.02.016

TAO Jiangyue, LIU Lijuan, PANG Yong, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. J Zhejiang A&F Univ, 2018, 35(2): 314 - 323. doi: 10.11833/j.issn.2095-0756.2018.02.016
[4] 史飞飞, 高小红, 杨灵玉, 等.基于地面高光谱数据的典型作物类型识别方法:以青海省湟水流域为例[J].遥感技术与应用, 2016, 32(2):32 - 39.http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201602007

SHI Feifei, GAO Xiaohong, YANG Lingyu, et al. Identifying typical crop types from ground hyper-spectral data: a case study in the Huangshui River basin, Qinghai Province[J]. Geogr Geo-Inf Sci, 2016, 32(2): 32 - 39.http://d.old.wanfangdata.com.cn/Periodical/dlxygtyj201602007
[5] 戴建国, 张国顺, 郭鹏, 等.基于无人机遥感可见光影像的北疆主要农作物分类方法[J].农业工程学报, 2018, 34(18): 122 - 129. doi: 10.11975/j.issn.1002-6819.2018.18.015

DAI Jianguo, ZHANG Guoshun, GUO Peng, et al. Classification method of main crops in northern Xinjiang based on UAV visible waveband images[J]. Transac Chin Soc Agric Eng, 2018, 34(18): 122 - 129. doi: 10.11975/j.issn.1002-6819.2018.18.015
[6] 郭文茜, 任建强, 刘杏认, 等.统计数据总量约束下全局优化阈值的冬小麦分布制图[J].遥感学报, 2018, 22(6):1023 - 1041.http://d.old.wanfangdata.com.cn/Periodical/ygxb201806012

GUO Wenqian, REN Jianqiang, LIU Xingren, et al. Winter wheat mapping with globally optimized threshold under total quantity constraint of statistical data[J]. J Remote Sensing, 2018, 22(6): 1023 - 1041.http://d.old.wanfangdata.com.cn/Periodical/ygxb201806012
[7] 范德芹, 赵学胜, 朱文泉, 等.植物物候遥感监测精度影响因素研究综述[J].地理科学进展, 2016, 35(3):304 - 319.http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201603005

FAN Deqin, ZHAO Xuesheng, ZHU Wenquan, et al. Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data[J]. Prog Geogr, 2016, 35(3): 304 - 319.http://d.old.wanfangdata.com.cn/Periodical/dlkxjz201603005
[8] 邱琳, 林辉, 臧卓, 等.基于均值置信区间带的湿地植被高光谱特征波段选择[J].中南林业科技大学学报, 2013, 33(1):41 - 45.http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201301009

QIU Lin, LIN Hui, ZANG Zhuo, et al. Hyper-spectral characteristic band selection for wetland vegetation based on mean confidence interval[J]. J Cent South Univ For Technol, 2013, 33(1): 41 - 45.http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201301009
[9] 张甜, 廖和平, 崔林林.包络线去除的丘陵地区遥感影像阴影信息重建[J].遥感学报, 2017, 21(4):604 - 613.http://d.old.wanfangdata.com.cn/Periodical/ygxb201704011

ZHANG Tian, LIAO Heping, CUI Linlin. Mountainous shadow information restoration based on the continuum removed[J]. J Remote Sensing, 2017, 21(4): 604 - 613.http://d.old.wanfangdata.com.cn/Periodical/ygxb201704011
[10] 李婵, 王俊杰, 邬国锋, 等.基于叶片光谱特征的农业区域植物分类[J].深圳大学学报(理工版), 2018, 35(3):307 - 315.http://d.old.wanfangdata.com.cn/Periodical/szdxxb201803010

LI Chan, WANG Junjie, WU Guofeng, et al. Classification of agricultural plants based on leaf spectral features[J]. J Shenzhen Univ Sci Eng, 2018, 35(3): 307 - 315.http://d.old.wanfangdata.com.cn/Periodical/szdxxb201803010
[11] 陈彦兵, 况润元, 曾帅.基于高光谱数据的鄱阳湖湿地典型植被识别分析[J].人民长江, 2018, 49(20):19 - 23.http://d.old.wanfangdata.com.cn/Periodical/rmcj201820004

CHEN Yanbing, KUANG Runyuan, ZENG Shuai. Discriminant analysis of typical vegetation species in Poyang Lake wetland based on hyperspectral data[J]. Yangtze River, 2018, 49(20): 19 - 23.http://d.old.wanfangdata.com.cn/Periodical/rmcj201820004
[12] BREIMAN L. Random forests[J]. Mach Learn, 2001, 45(1): 5 - 32. doi: 10.1023/A:1010933404324
[13] BREIMAN L. Bagging predictors[J]. Mach Learn, 1996, 24(2): 123 - 140.http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224054512/
[14] 杨珺雯, 张锦水, 朱秀芳, 等.随机森林在高光谱遥感数据中降维与分类的应用[J].北京师范大学学报(自然科学版), 2015, 51(增刊1):82-88.http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb2015z1013

YANG Junwen, ZHANG Jinshui, ZHU Xiufang, et al. Random forest applied for dimensionreduction and classification in hyperspectral data[J]. J Beijing Norm Univ Nat Sci, 2015, 51(suppl 1): 82 - 88.http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb2015z1013
[15] 刘毅, 杜培军, 郑辉, 等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学, 2012, 37(4):194 - 196.http://d.old.wanfangdata.com.cn/Periodical/chkx201204063

LIU Yi, DU Peijun, ZHENG Hui, et al. Classification of China small satellite remote sensing image based on random forests[J]. Sci Surv Mapp, 2012, 37(4): 194 - 196.http://d.old.wanfangdata.com.cn/Periodical/chkx201204063
[16] 冯伟, 郭天财, 谢迎新, 等.作物光谱分析技术及其在生长监测中的应用[J].中国农学通报, 2009, 25(23):182 - 188.http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200923039

FENG Wei, GUO Tiancai, XIE Yingxin, et al. Spectrum analytical technique and its applications for the crop growth detection[J]. Chin Agric Sci Bull, 2009, 25(23): 182 - 188.http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200923039