[1] LYNCH J P. Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops [J]. Plant Physiol, 2011, 156(3): 1041 − 1049.
[2] KOBAYASHI K, AWAI K, NAKAMURA M, et al. Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation [J]. Plant J Cell Mol Biol, 2010, 57(2): 322 − 331.
[3] SHIMOJIMA M, MADOKA Y, FUJIWARA R, et al. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants [J/OL]. Frontn Plant Sci, 2015, 6: 664[2022-01-15]. doi: 10.3389/fpls.2015.00664.
[4] KOBAYASHI K, AWAI K, TAKAMIYA K, et al. Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation [J]. Plant Physiol, 2004, 134(2): 640 − 648.
[5] AWAI K, MARÉCHAL E, BLOCK M A, et al. Two types of MGDG synthase genes, found widely in both 16∶3 and 18∶3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana [J]. Proc Nat Acad Sci, 2001, 98(19): 10960 − 10965.
[6] YUZAWA Y, NISHIHARA H, HARAGUCHI T, et al. Phylogeny of galactolipid synthase homologs together with their enzymatic analyses revealed a possible origin and divergence time for photosynthetic membrane biogenesis [J]. DNA Res, 2012, 19(1): 91 − 102.
[7] KOBAYASHI K, NAKAMURA Y, OHTA H. Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants [J]. Plant Physiol Biochem, 2009, 47(6): 518 − 525.
[8] 王桂峰, 张杰, 王安琪. 全国棉花生产格局时景下山东省棉花生产保护区支撑体系构建[J]. 山东农业科学, 2020, 52(5): 130 − 135.

WANG Guifeng, ZHANG Jie, WANG Anqi. Construction of support system of cotton production reserve in Shandong Province under the background of national cotton production pattern [J]. Shandong Agric Sci, 2020, 52(5): 130 − 135.
[9] 卢秀茹, 贾肖月, 牛佳慧. 中国棉花产业发展现状及展望[J]. 中国农业科学, 2018, 51(1): 26 − 36.

LU Xiuru, JIA Xiaoyue, NIU Jiahui. Development status and prospect of China’s cotton industry [J]. China Agric Sci, 2018, 51(1): 26 − 36.
[10] 毛玮, 曹跃芬. 棉纤维发育的遗传特性及相关基因的研究进展[J]. 浙江农林大学学报, 2018, 35(6): 1155 − 1165.

MAO Wei, CAO Yuefen. Genetic characteristics and research advances of genes related to cotton fiber developments [J]. J Zhejiang A&F Univ, 2018, 35(6): 1155 − 1165.
[11] JIN Longguo, LIU Jinyuan. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirstum) [J]. Plant Physiol Biochem, 2008, 46(1): 46 − 53.
[12] 蒋柏藩. 石灰性土壤无机有效性的研究[J]. 土壤, 1992, 24(2): 61 − 64.

JIANG Baifan. Study on inorganic availability of calcareous soil [J]. Soils, 1992, 24(2): 61 − 64.
[13] 马星竹, 周宝库, 郝小雨, 等. 小麦— 大豆— 玉米轮作体系长期不同施肥黑土磷素平衡及有效性[J]. 植物营养与肥料学报, 2018, 24(6): 1672 − 1678.

MA Xingzhu, ZHOU Baoku, HAO Xiaoyu, et al. Phosphorus balance and availability of black soil under long-term different fertilization in wheat soybean maize rotation system [J]. J Plant Nutr Fert, 2018, 24(6): 1672 − 1678.
[14] 付明鑫, 向敏超, 孟风轩, 等. 阿克苏棉区不同氮磷钾配比对棉花产量的影响[J]. 西北农业学报, 2000, 9(2): 117 − 120.

FU Mingxin, XIANG Minchao, MENG Fengxuan, et al. Effects of nitrogen, phosphorus and potassium ratios on cotton yield in aksu cotton region [J]. Acta Agric Boreali-Occident Sin, 2000, 9(2): 117 − 120.
[15] 周建菲, 史文辉, 潘凯婷, 等. 低磷胁迫对毛竹幼苗生长和养分生理的影响[J]. 浙江农林大学学报, 2022, 39(5): 1010 − 1017.

ZHOU Jianfei, SHI Wenhui, PAN Kaiting, et al. Effect of low phosphorus stress on growth and nutrient physiology of Phyllostachys edulis seedlings [J]. J Zhejiang A&F Univ, 2022, 39(5): 1010 − 1017.
[16] 陈可可, 黄莉娟, 王普昶, 等. 2种雀稗属牧草对低磷胁迫的生长、生理应激响应[J]. 核农学报, 2021, 35(8): 1908 − 1915.

CHEN Keke, HUANG Lijuan, WANG Puchang, et al. Growth and physiological responses of two species of Paspalum forage to low phosphorus stress [J]. J Nucl Agric Sci, 2021, 35(8): 1908 − 1915.
[17] 张学昕, 刘淑英, 王平. 施磷量对棉花磷素吸收利用和产量的影响[J]. 农业科技与信息, 2019(10): 36 − 41.

ZHANG Xuexin, LIU Shuying, WANG Ping. Effects of phosphorus application rate on phosphorus uptake, utilization and yield of cotton [J]. Agric Sci Technol Inf, 2019(10): 36 − 41.
[18] 王刚, 郑苍松, 李鹏程, 等. 土壤有效磷含量对棉花幼苗干物质积累和碳氮代谢的影响[J]. 棉花学报, 2016, 28(6): 609 − 618.

WANG Gang, ZHENG Cangsong, LI Pengcheng, et al. Effects of soil available phosphorus content on dry matter accumulation and carbon and nitrogen metabolism of cotton seedlings [J]. Cotton J, 2016, 28(6): 609 − 618.
[19] 刘耘华, 卢响军, 陈波浪, 等. 施用有机肥对棉田土壤磷素有效性及棉花产量的影响[J]. 新疆农业科学, 2013, 50(4): 667 − 673.

LIU Genhua, LU Xiangjun, CHEN Bolang, et al. Effects of organic fertilizer application on soil phosphorus availability and cotton yield in cotton field [J]. Xinjiang Agric Sci, 2013, 50(4): 667 − 673.
[20] 张敏, 盛建东, 白灯莎·买买提艾力, 等. 不同磷效率棉花根系形态和磷酸酶活性对供磷强度的响应[J]. 棉花学报, 2017, 29(3): 283 − 291.

ZHANG Min, SHENG Jiandong, Baidengsha Maimaitierli, et al. Responses of root morphology and phosphatase activity to phosphorus supply in cotton with different phosphorus efficiencies [J]. Cotton Sci, 2017, 29(3): 283 − 291.
[21] TRIPATHI S, SRIVASTAVA Y, SANGWAN R S, et al. In silico mining and functional analysis of AP2/ERF gene in Withania somnifera [J]. Sci Rep, 2020, 10(1): 1 − 12.
[22] MURAKAWA M, SHIMOJIMA M, SHIMOMURA Y, et al. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation[J/OL]. Front Plant Sci, 2014, 5: 280[2022-01-20]. doi: 10.3389/fpls.2014.00280.
[23] 史中惠, 王仕稳, 殷俐娜, 等. 超表达水稻MGD基因(OsMGD)烟草植株的耐低磷胁迫能力[J]. 西北农林科技大学学报(自然科学版), 2013, 41(10): 97 − 104.

SHI Zhonghui, WANG Shiwen, YIN Li’na, et al. Overexpression of rice MGD gene (OsMGD) in tobacco plants tolerant to low phosphorus stress [J]. J Northwest A&F Univ Nat Sci Ed, 2013, 41(10): 97 − 104.
[24] ANDERSSON M X, LARSSON K E, TJELLSTRM H, et al. Phosphate-limited oat. the plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane [J]. J Biol Chem, 2005, 280(30): 27578 − 27586.
[25] FUJII S, KOBAYASHI K, NAGATA N, et al. Monogalactosyldiacylglycerol facilitates synthesis of photoactive protochlorophyllide in etioplasts [J]. Plant Physiol, 2017, 174(4): 2183 − 2198.
[26] KOBAYASHI, KOICHI. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development [J]. J Plant Res, 2016, 129(4): 565 − 580.
[27] MIZUSAWA N, WADA H. The role of lipids in photosystem Ⅱ [J]. Biochim Biophysic Acta Bioenerg, 2012, 1817(1): 194 − 208.