[1] 郭泽鑫, 曹聪, 刘萍. 基于连清数据的广东杉木人工林生物量模型构建[J]. 中南林业科技大学学报, 2022, 42(8): 78 − 89.

GUO Zexin, CAO Cong, LIU Ping. Construction of biomass models of Cunninghamia lanceolata plantation based on continuous forest inventory in Guangdong [J]. Journal of Central South University of Forestry &Technology, 2022, 42(8): 78 − 89.
[2] 周昊, 叶尔江•拜克吐尔汉, 何怀江, 等. 东北地区主要造林树种幼苗期生物量分配特征与异速生长模型[J]. 林业科学, 2023, 59(11): 23 − 32.

ZHOU Hao, Yeerjiang Baiketuerhan, HE Huaijiang, et al. Biomass distribution characteristics and species-specific allometric equations for afforestation species in Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(11): 23 − 32.
[3] 王海军, 李峰, 肖楠. 黑龙江省主要碳汇树种生物量异速生长方程研究[J]. 防护林科技, 2016(5): 21 − 22.

WANG Haijun, LI Feng, XIAO Nan. Allomteric equation fog biomass of the main carbon sink species in Heilongjiang Province [J]. Protection Forest Science and Technology, 2016(5): 21 − 22.
[4] SOLTANI A. Mathematical Modeling in Field Crops [M]. Mashhad: JMD Press, 2009.
[5] NIKLAS K J. Plant Allometry: the Scaling of Form and Process [M]. Chicago: University of Chicago Press, 1994.
[6] SUN Han, WANG Xiaoping, FAN Dayong. Effects of climate, biotic factors, and phylogeny on allometric relationships: testing the metabolic scaling theory in plantations and natural forests across China [J/OL]. Forest Ecosystems, 2020, 7: 51[2024-01-14]. doi: 10.1186/s40663-020-00263-y.
[7] 陈东升, 孙晓梅, 金英博, 等. 林龄和竞争对日本落叶松各组分生物量异速关系的影响[J]. 生态学报, 2020, 40(3): 843 − 853.

CHEN Dongsheng, SUN Xiaomei, JIN Yingbo, et al. Effects of stand age and competition on allometric relationships for biomass partitioning in Larix kaempferi plantation [J]. Acta Ecologica Sinica, 2020, 40(3): 843 − 853.
[8] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54 − 63.

DONG Dian, LIN Tianxi, TANG Jingyi, et al. Biomass allocation patterns and allometric models of Tilia amurensis [J]. Journal of Beijing Forestry University, 2014, 36(4): 54 − 63.
[9] 薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7): 86 − 94.

XUE Chunquan, XU Qihu, LIN Liping, et al. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation [J]. Scientia Silvae Sinicae, 2019, 55(7): 86 − 94.
[10] 兰洁, 肖中琪, 李吉玫, 等. 天山雪岭云杉生物量分配格局及异速生长模型[J]. 浙江农林大学学报, 2020, 37(3): 416 − 423.

LAN Jie, XIAO Zhongqi, LI Jimei, et al. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains [J]. Journal of Zhejiang A&F University, 2020, 37(3): 416 − 423.
[11] 刘坤, 曹林, 汪贵斌, 等. 银杏生物量分配格局及异速生长模型[J]. 北京林业大学学报, 2017, 39(4): 12 − 20.

LIU Kun, CAO Lin, WANG Guibin, et al. Biomass allocation patterns and allometric models of Ginkgo biloba [J]. Journal of Beijing Forestry University, 2017, 39(4): 12 − 20.
[12] PICARD N, RUTISHAUSER E, PLOTON P, et al. Should tree biomass allometry be restricted to power models? [J]. Forest Ecology and Management, 2015, 353: 156 − 163.
[13] DJOMO A N, CHIMI C D. Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: case study with application to remote sensing [J]. Forest Ecology and Management, 2017, 391: 184 − 193.
[14] GOODMAN R C, PHILLIPS O L, BAKER T R. The importance of crown dimensions to improve tropical tree biomass estimates [J]. Ecological Applications, 2014, 24(4): 680 − 698.
[15] SATOO T, MADGWICK H A I. Forest Biomass [M]. Boston: Martinus Nijhoff /Dr. W. Junk Publishers, 1982: 152.
[16] HELMISAARI H, MAKKONEN K, KELLOMÄKI S, et al. Below- and above-ground biomass, production and nitrogen use in scots pine stands in eastern Finland [J]. Forest Ecology and Management, 2002, 165(1/3): 317 − 326.
[17] 国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019

National Forestry and Grassland Administration. China Forest Resources Report (2014−2018) [M]. Beijing: China Forestry Publishing House, 2019
[18] 杨忠, 张建平, 王道杰, 等. 元谋干热河谷桉树人工林生物量初步研究[J]. 山地学报, 2001, 19(6): 503 − 510.

YANG Zhong, ZHANG Jianping, WANG Daojie, et al. Preliminary study on the biomass of artificial Eucalyptus camaldulensis Dehnl forests in Arid-Hot Valleys, Yuanmou [J]. Journal of Mountain Science, 2001, 19(6): 503 − 510.
[19] 张利丽, 王志超, 陈少雄, 等. 不同林龄尾巨桉人工林的生物量分配格局[J]. 西北农林科技大学学报(自然科学版), 2017, 45(6): 61 − 68.

ZHANG Lili, WANG Zhichao, CHEN Shaoxiong, et al. Biomass allocation pattern of Eucalyptus urophylla×Eucalyptus grandis plantation at different ages [J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(6): 61 − 68.
[20] 揭凡, 杜阿朋, 竹万宽. 桉树生物量估算模型及与IPCC法的对比分析[J]. 桉树科技, 2019, 36(1): 1 − 8.

JIE Fan, DU Apeng, ZHU Wankuan. Allometry equations for estimating Eucalyptus tree biomass and comparison with IPCC method [J]. Eucalypt Science &Technology, 2019, 36(1): 1 − 8.
[21] XU Yuxing, DU Apeng, WANG Zhichao, et al. Effects of different rotation periods of eucalyptus plantations on soil physiochemical properties, enzyme activities, microbial biomass and microbial community structure and diversity [J/OL]. Forest Ecology and Management, 2020, 456: 117683[2024-01-14]. doi: 10.1016/j.foreco.2019.117683.
[22] WANG Zhichao, LIU Siru, XU Yuxing, et al. Differences in transpiration characteristics among Eucalyptus plantations of three species on the Leizhou Peninsula, Southern China [J/OL]. Forests, 2022, 13(10): 1544[2024-01-14]. doi: 10.3390/f13101544.
[23] XIANG Wenhua, LI Linhua, OUYANG Shuai, et al. Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations [J]. European Journal of Forest Research, 2021, 140(2): 317 − 332.
[24] AKAIKE H. A new look at the statistical model identification [J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716 − 723.
[25] MENSAH S, KAKAÏ R G, SEIFERT T. Patterns of biomass allocation between foliage and woody structure: the effects of tree size and specific functional traits [J]. Annals of Frest Research, 2016, 59(1): 49 − 60.
[26] 刘宣, 肖洒, 朱鹏, 等. 亚热带同质园不同人工林的生物量和林下植被多样性差异[J]. 浙江农林大学学报, 2022, 39(4): 717 − 726.

LIU Xuan, XIAO Sa, ZHU Peng, et al. Difference of biomass and understory vegetation diversity among different subtropical plantations in common gardens [J]. Journal of Zhejiang A&F University, 2022, 39(4): 717 − 726.
[27] HOUGHTON R A, LAWRENCE K T, HACKLER J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates [J]. Golbal Change Biology, 2001, 7(7): 731 − 746.
[28] SAATCHI S S, HOUGHTON R A, ALVALÁ R C D S, et al. Distribution of aboveground live biomass in the Amazon Basin [J]. Global Change Biology, 2007, 13(4): 816 − 837.
[29] SAINT-ANDRÉ L, M BOU A T, MABIALA A, et al. Age-related equations for above- and below-ground biomass of a eucalyptus hybrid in Congo [J]. Forest Ecology and Management, 2005, 205(1): 199 − 214.
[30] PEICHL M, ARAIN M A. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests [J]. Forest Ecology and Management, 2007, 253(1/3): 68 − 80.
[31] SEO Y O, LEE Y J, LUMBRES R I C, et al. Influence of stand age class on biomass expansion factor and allometric equations for Pinus rigida plantations in South Korea [J]. Scandinavian Journal of Forest Research, 2013, 28(6): 566 − 573.
[32] LIM H W, LEE K H, LEE K H, et al. Biomass expansion factors and allometric equations in an age sequence for Japanese cedar (Cryptomeria japonica) in Southern Korea [J]. Journal of Forest Research, 2013, 18(4): 316 − 322.
[33] LI Hui, LI Chunyi, ZHA Tianshan, et al. Patterns of biomass allocation in an age-sequence of secondary Pinus bungeana forests in China [J]. The Forestry Chronicle, 2014, 90(2): 169 − 176.
[34] FATEMI F R, YANAI R D, HAMBURG S P, et al. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass [J]. Canadian Journal of Forest Research, 2011, 41(4): 881 − 891.
[35] TOBIN B, NIEUWENHUIS M. Biomass expansion factors for Sitka spruce (Picea sitchensis (Bong. ) Carr. ) in Ireland [J]. European Journal of Forest Research, 2007, 126(2): 189 − 196.
[36] ZIANIS D, MENCUCCINI M. On simplifying allometric analyses of forest biomass [J]. Forest Ecology and Management, 2004, 187(2/3): 311 − 332.
[37] PILLI R, ANFODILLO T, CARRER M. Towards a functional and simplified allometry for estimating forest biomass [J]. Forest Ecology and Management, 2006, 237(1/3): 583 − 593.
[38] VERÓNICA G, LUIS P P, GERARDO R. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient [J]. Forest Ecology and Management, 2010, 259(6): 1118 − 1126.
[39] MOROTE F A G, SERRANO F R L, ANDRÉS M, et al. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain [J]. Forest Ecology and Management, 2012, 270: 85 − 93.
[40] SINGNAR P, DAS M C, SILESHI G W, et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera [J]. Forest Ecology and Management, 2017, 395: 81 − 91.
[41] WAGNER R G, TER-MIKAELIAN M T. Comparison of biomass component equations for four species of northern coniferous tree seedlings [J]. Annals of Forest Science, 1999, 56(3): 193 − 199.
[42] XIAO Chunwang, CEULEMANS R. Allometric relationships for below- and aboveground biomass of young scots pines [J]. Forest Ecology and Management, 2004, 203(1/3): 177 − 186.
[43] CIENCIALA E, ČERNÝ M, TATARINOV F, et al. Biomass functions applicable to scots pine [J]. Trees, 2006, 20(4): 483 − 495.
[44] JENKINS J C, CHOJNACKY D C, HEALTH L S, et al. National scale biomass estimators for United States tree species [J]. Forest Science, 2003, 49(1): 12 − 35.
[45] BOND-LAMBERTY B, WANG C, GOWER S T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba [J]. Canadian Journal of Forest Research, 2002, 32(8): 1441 − 1450.