| [1] | GEORGE E F, HALL M A, DE KLERK G J. Plant Propagation by Tissue Culture Vol 1: the Background [M]. 3rd ed. Dordrecht: Springer, 2008: 65−175. DOI: 10.1007/978-1-4020-5005-3. |
| [2] | THORPE T A. History of plant tissue culture [J]. Molecular Biotechnology, 2007, 37(2): 169−180. DOI: 10.1007/s12033-007-0031-3. |
| [3] | LONG Yun, YANG Yun, PAN Guangtang, et al. New insights into tissue culture plant-regeneration mechanisms[J]. Frontiers in Plant Science, 2022, 13: 926752. DOI: 10.3389/fpls.2022.926752. |
| [4] | VASIL I K. A history of plant biotechnology: from the Cell Theory of Schleiden and Schwann to biotech crops [J]. Plant Cell Reports, 2008, 27(9): 1423−1440. DOI: 10.1007/s00299-008-0571-4. |
| [5] | HILL K, SCHALLER G E. Enhancing plant regeneration in tissue culture: a molecular approach through manipulation of cytokinin sensitivity[J]. Plant Signaling & Behavior, 2013, 8(10): 25709. DOI: 10.4161/psb.25709. |
| [6] | XU Lin, HUANG Hai. Genetic and epigenetic controls of plant regeneration [J]. Current Topics in Developmental Biology, 2014, 108: 1−33. DOI: 10.1016/B978-0-12-391498-9.00009-7. |
| [7] | SANG Yalin, CHENG Zhijuan, ZHANG Xiansheng. Plant stem cells and de novo organogenesis [J]. The New Phytologist, 2018, 218(4): 1334−1339. DOI: 10.1111/nph.15106. |
| [8] | GUAN Yuan, LI Shuigen, FAN Xiaofen, et al. Application of somatic embryogenesis in woody plants[J]. Frontiers in Plant Science, 2016, 7: 938. DOI: 10.3389/fpls.2016.00938. |
| [9] | MÉNDEZ-HERNÁNDEZ H A, LEDEZMA-RODRÍGUEZ M, AVILEZ-MONTALVO R N, et al. Signaling overview of plant somatic embryogenesis[J]. Frontiers in Plant Science, 2019, 10: 77. DOI: 10.3389/fpls.2019.00077. |
| [10] | KHAN F S, ZENG Renfang, GAN Zhimeng, et al. Genome-wide identification and expression profiling of the WOX gene family in Citrus sinensis and functional analysis of a CsWUS member[J]. International Journal of Molecular Sciences, 2021, 22(9): 4919. DOI: 10.3390/ijms22094919. |
| [11] | LI Jianbo, ZHANG Jin, JIA Huixia, et al. The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar [J]. Tree Physiology, 2018, 38(1): 139−153. DOI: 10.1093/treephys/tpx118. |
| [12] | ZHOU Xiaoqi, HAN Haitao, CHEN Jinhui, et al. The emerging roles of WOX genes in development and stress responses in woody plants[J]. Plant Science, 2024, 349: 112259. DOI: 10.1016/j.plantsci.2024.112259. |
| [13] | RYMEN B, KAWAMURA A, LAMBOLEZ A, et al. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis[J]. Communications Biology, 2019, 2: 404. DOI: 10.1038/s42003-019-0646-5. |
| [14] | LEE S, PARK Y S, RHEE J H, et al. Insights into plant regeneration: cellular pathways and DNA methylation dynamics[J]. Plant Cell Reports, 2024, 43(5): 120. DOI: 10.1007/s00299-024-03216-9. |
| [15] | PARK Y S, BONGA J M, MOON H K. Vegetative Propagation of Forest Trees[C]. Seoul: National Institute of Forest Science (NiFos), 2016: 302−322. |
| [16] | AHMAD I, HUSSAIN T, ASHRAF I, et al. Lethal effects of secondary metabolites on plant tissue culture [J]. American-Eurasian Journal of Agricultural and Environmental Sciences, 2013, 13(4): 539−547. |
| [17] | PRAKASH M G, GURUMURTHI K. Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2010, 100(1): 13−20. DOI: 10.1007/s11240-009-9611-1. |
| [18] | OTIENDE M A, FRICKE K, NYABUNDI J O, et al. Involvement of the auxin–cytokinin homeostasis in adventitious root formation of rose cuttings as affected by their nodal position in the stock plant[J]. Planta, 2021, 254(4): 65. DOI: 10.1007/s00425-021-03709-x. |
| [19] | 买凯乐, 李荣珍, 刘宏, 等. 银杉愈伤组织诱导植株再生的影响因素[J]. 林业科学, 2024, 60(7): 56−64. MAI Kaile, LI Rongzhen, LIU Hong, et al. Factors influencing the callus induction and plant regeneration of Cathaya argyrophylla [J]. Scientia Silvae Sinicae, 2024, 60(7): 56−64. |
| [20] | 南雅琪, 刘娟, 齐宇, 等. 高山杜鹃组培快繁关键技术研究[J]. 安徽农业科学, 2024, 52(22): 42−46. NAN Yaqi, LIU Juan, QI Yu, et al. Research on key techniques for tissue culture of Rhododendron lapponicum [J]. Journal of Anhui Agricultural Sciences, 2024, 52(22): 42−46. |
| [21] | 王娜. 不同牡丹品种再生体系技术研究[D]. 洛阳: 河南科技大学, 2024. WANG Na. Study on Regeneration Aystem Technology of Different Peony Varieties[D]. Luoyang: Henan University of Science and Technology, 2024. |
| [22] | 范新蕊. 胡桃楸组织培养技术的研究[D]. 沈阳: 沈阳农业大学, 2023. FAN Xinrui. Study on Tissue Culture Technology of Juglans mandshurica Maxim[D]. Shenyang: Shenyang Agricultural University, 2023. |
| [23] | PHILLIPS G C, GARDA M. Plant tissue culture media and practices: an overview [J]. In Vitro Cellular & Developmental Biology-Plant, 2019, 55(3): 242−257. |
| [24] | GAGO D, SÁNCHEZ C, ALDREY A, et al. Micropropagation of plum (Prunus domestica L.) in bioreactors using photomixotrophic and photoautotrophic conditions [J]. Horticulturae, 2022, 8(4): 286. DOI: 10.3390/horticulturae8040286. |
| [25] | GAO Yue, WANG Qinmei, AN Qinxia, et al. A novel micropropagation of Lycium ruthenicum and epigenetic fidelity assessment of three types of micropropagated plants in vitro and ex vitro[J]. PLoS One, 2021, 16(2): e0247666. DOI: 10.1371/journal.pone.0247666. |
| [26] | 陈铭秋, 刘果, 林彦, 等. 木本植物组织培养及器官从头再生的研究进展[J]. 桉树科技, 2023, 40(4): 85−96. CHEN Mingqiu, LIU Guo, LIN Yan, et al. Research progress in tissue culture and organ de novo regeneration of woody plants [J]. Eucalypt Science & Technology, 2023, 40(4): 85−96. |
| [27] | LICEA-MORENO R J, CONTRERAS A, MORALES A V, et al. Improved walnut mass micropropagation through the combined use of phloroglucinol and FeEDDHA [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 123(1): 143−154. DOI: 10.1007/s11240-015-0822-3. |
| [28] | PASTERNAK T P, STEINMACHER D. Plant growth regulation in cell and tissue culture in vitro[J]. Plants, 2024, 13(2): 327. |
| [29] | 章文益. 茶树茎段再生体系的建立[D]. 贵阳: 贵州大学, 2022. ZHANG Wenyi. Establishment of a Regeneration System from Stem Segments in Tea Plant (Camellia sinensis)[D]. Guiyang: Guizhou University, 2022. |
| [30] | 沈霞, 杨小林, 马和平, 等. 银白杨组织培养生根条件影响因子研究[J]. 西部林业科学, 2020, 49(4): 48−53. SHEN Xia, YANG Xiaolin, MA Heping, et al. Rooting influencing factors of Populus alba tissue culture [J]. Journal of West China Forestry Science, 2020, 49(4): 48−53. |
| [31] | 张新超, 张新宇, 张雪梅, 等. ‘绿岭’核桃带芽茎段的组织培养和快速繁殖[J]. 北方园艺, 2023(24): 38−44. ZHANG Xinchao, ZHANG Xinyu, ZHANG Xuemei, et al. Tissue culture and rapid propagation of ‘lyuling’ walnut stems with axillary buds [J]. Northern Horticulture, 2023(24): 38−44. |
| [32] | de OLIVEIRA L S, BRONDANI G E, MOLINARI L V, et al. Optimal cytokinin/auxin balance for indirect shoot organogenesis of Eucalyptus cloeziana and production of ex vitro rooted micro-cuttings [J]. Journal of Forestry Research, 2022, 33(5): 1573−1584. DOI: 10.1007/s11676-022-01454-9. |
| [33] | KIM S H, ZEBRO M, JANG D C, et al. Optimization of plant growth regulators for in vitro mass propagation of a disease-free ‘Shine Muscat’ grapevine cultivar [J]. Current Issues in Molecular Biology, 2023, 45(10): 7721−7733. DOI: 10.3390/cimb45100487. |
| [34] | del CARMEN OROZCO-MOSQUEDA M, SANTOYO G, GLICK B R. Recent advances in the bacterial phytohormone modulation of plant growth[J]. Plants, 2023, 12(3): 606. DOI: 10.3390/plants12030606. |
| [35] | WU Qinggui, YANG Honglin, SUN Yuxi, et al. Organogenesis and high-frequency plant regeneration in Caryopteris terniflora Maxim. using thidiazuron [J]. In Vitro Cellular & Developmental Biology - Plant, 2021, 57(1): 39−47. |
| [36] | TALLÓN C I, PORRAS I, PÉREZ-TORNERO O. Efficient propagation and rooting of three Citrus rootstocks using different plant growth regulators [J]. In Vitro Cellular & Developmental Biology-Plant, 2012, 48(5): 488−499. |
| [37] | JYOTI J. Micropropagation of Hazelnut (Corylus Species) [D]. Guelph: University of Guelph, 2013. |
| [38] | DÍAZ-RUEDA P, CANTOS-BARRAGÁN M, COLMENERO-FLORES J M. Growth quality and development of olive plants cultured in-vitro under different illumination regimes[J]. Plants, 2021, 10(10): 2214. DOI: 10.3390/plants10102214. |
| [39] | 王娜, 杨柳, 赵国栋, 等. 重要木本植物组织培养技术研究进展[J]. 上海农业学报, 2025, 41(1): 131−142. WANG Na, YANG Liu, ZHAO Guodong, et al. Advances in tissue culture techniques of important woody plants [J]. Acta Agriculturae Shanghai, 2025, 41(1): 131−142. |
| [40] | 沈霞. 银白杨幼化与环境因子响应[D]. 拉萨: 西藏大学, 2020. SHEN Xia. Silver Poplar Incubation and Environmental Factor Response[D]. Lhasa: Tibet University, 2020. |
| [41] | 于秋莹, 郭苗苗, 许岢昕, 等. 欧洲丁香品种‘Downfield’花序和花序轴愈伤组织诱导和悬浮培养[J]. 东北林业大学学报, 2023, 51(3): 47−53. YU Qiuying, GUO Miaomiao, XU Kexin, et al. Callus induction and suspension culture with inflorescence and inflorescence axis of Syringa vulgaris ‘Downfield’ [J]. Journal of Northeast Forestry University, 2023, 51(3): 47−53. |
| [42] | IKEUCHI M, OGAWA Y, IWASE A, et al. Plant regeneration: cellular origins and molecular mechanisms [J]. Development, 2016, 143(9): 1442−1451. DOI: 10.1242/dev.134668. |
| [43] | SUGIMOTO K, JIAO Yuling, MEYEROWITZ E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway [J]. Developmental Cell, 2010, 18(3): 463−471. DOI: 10.1016/j.devcel.2010.02.004. |
| [44] | PETERNEL Š, GABROVŠEK K, GOGALA N, et al. In vitro propagation of European aspen (Populus tremula L. ) from axillary buds via organogenesis[J]. Scientia Horticulturae, 2009, 121(1): 109−112. |
| [45] | TALLÓN C I, PORRAS I, PÉREZ-TORNERO O. High efficiency in vitro organogenesis from mature tissue explants of Citrus macrophylla and C. aurantium [J]. In Vitro Cellular & Developmental Biology-Plant, 2013, 49(2): 145−155. |
| [46] | BORCHETIA S, DAS S C, HANDIQUE P J, et al. High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp. ) [J]. Scientia Horticulturae, 2009, 120(4): 544−550. DOI: 10.1016/j.scienta.2008.12.007. |
| [47] | IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression [J]. The Plant Cell, 2013, 25(9): 3159−3173. DOI: 10.1105/tpc.113.116053. |
| [48] | ATTA R, LAURENS L, BOUCHERON-DUBUISSON E, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro [J]. The Plant Journal, 2009, 57(4): 626−644. DOI: 10.1111/j.1365-313X.2008.03715.x. |
| [49] | CHE Ping, LALL S, HOWELL S H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture [J]. Planta, 2007, 226(5): 1183−1194. DOI: 10.1007/s00425-007-0565-4. |
| [50] | FAN Mingzhu, XU Chongyi, XU Ke, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration [J]. Cell Research, 2012, 22(7): 1169−1180. DOI: 10.1038/cr.2012.63. |
| [51] | XU Chongyi, CAO Huifen, ZHANG Qianqian, et al. Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration [J]. Nature Plants, 2018, 4(2): 108−115. DOI: 10.1038/s41477-017-0095-4. |
| [52] | AMARAL J, RIBEYRE Z, VIGNEAUD J, et al. Advances and promises of epigenetics for forest trees[J]. Forests, 2020, 11(9): 976. DOI: 10.3390/f11090976. |
| [53] | LIU Xuemei, ZHU Kehui, XIAO Jun. Recent advances in understanding of the epigenetic regulation of plant regeneration [J]. aBIOTECH, 2023, 4(1): 31−46. DOI: 10.1007/s42994-022-00093-2. |
| [54] | LI Jiawen, ZHANG Qiyan, WANG Zejia, et al. The roles of epigenetic regulators in plant regeneration: exploring patterns amidst complex conditions [J]. Plant Physiology, 2024, 194(4): 2022−2038. DOI: 10.1093/plphys/kiae042. |
| [55] | OZYIGIT I I. Phenolic changes during in vitro organogenesis of cotton (Gossypium hirsutum L. ) shoot tips [J]. African Journal of Biotechnology, 2008, 7: 1145−1150. |
| [56] | BUENO N, CUESTA C, CENTENO M L, et al. In vitro plant regeneration in conifers: the role of WOX and KNOX gene families[J]. Genes, 2021, 12(3): 438. DOI: 10.3390/genes12030438. |
| [57] | XU Meng, XIE Wenfan, HUANG Minren. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar [J]. Physiologia Plantarum, 2015, 155(4): 446−456. DOI: 10.1111/ppl.12349. |
| [58] | XU Chongyi, HU Yuxin. The molecular regulation of cell pluripotency in plants [J]. aBIOTECH, 2020, 1(3): 169−177. DOI: 10.1007/s42994-020-00028-9. |
| [59] | WAN Qihui, ZHAI Ning, XIE Dixiang, et al. WOX11: the founder of plant organ regeneration[J]. Cell Regeneration, 2023, 12(1): 1. DOI: 10.1186/s13619-022-00140-9. |
| [60] | CHEN Zhaoyu, CHEN Yadi, SHI Lanxi, et al. Interaction of phytohormones and external environmental factors in the regulation of the bud dormancy in woody plants[J]. International Journal of Molecular Sciences, 2023, 24(24): 17200. DOI: 10.3390/ijms242417200. |
| [61] | SUGIMOTO K, TEMMAN H, KADOKURA S, et al. To regenerate or not to regenerate: factors that drive plant regeneration [J]. Current Opinion in Plant Biology, 2019, 47: 138−150. DOI: 10.1016/j.pbi.2018.12.002. |
| [62] | SU Ying hua, ZHOU Chao, LI Ying ju, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(36): 22561−22571. |
| [63] | ZHANG Tianqi, LIAN Heng, ZHOU Chuanmiao, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration [J]. The Plant Cell, 2017, 29(5): 1073−1087. DOI: 10.1105/tpc.16.00863. |
| [64] | HAN Han, LIU Xing, ZHOU Yun. Transcriptional circuits in control of shoot stem cell homeostasis [J]. Current Opinion in Plant Biology, 2020, 53: 50−56. DOI: 10.1016/j.pbi.2019.10.004. |
| [65] | WEN Shuangshuang, GE Xiaolan, WANG Rui, et al. An efficient Agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba × P. glandulosa) using calli as explants[J]. International Journal of Molecular Sciences, 2022, 23(4): 2216. DOI: 10.3390/ijms23042216. |
| [66] | HAN H, SUN X M, XIE Y H, et al. Anatomical and physiological effects of phytohormones on adventitious roots development in Larix kaempferi × L. olgensis [J]. Silvae Genetica, 2013, 62(1/6): 96−103. DOI: 10.1515/sg-2013-0012. |
| [67] | Da COSTA C T, OFFRINGA R, FETT-NETO A G. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings[J]. Plant Science, 2020, 290: 110294. DOI: 10.1016/j.plantsci.2019.110294. |
| [68] | DRUEGE U, HILO A, PÉREZ-PÉREZ J M, et al. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation [J]. Annals of Botany, 2019, 123(6): 929−949. DOI: 10.1093/aob/mcy234. |
| [69] | BANNOUD F, BELLINI C. Adventitious rooting in Populus species: update and perspectives[J]. Frontiers in Plant Science, 2021, 12: 668837. DOI: 10.3389/fpls.2021.668837. |
| [70] | BATALOVA A Y, KRUTOVSKY K V. Genetic and epigenetic mechanisms of longevity in forest trees[J]. International Journal of Molecular Sciences, 2023, 24(12): 10403. DOI: 10.3390/ijms241210403. |
| [71] | YUAN Guoying, WANG Dan, YU Chaoguang, et al. 5-AzaCytidine promotes somatic embryogenesis of Taxodium hybrid ‘Zhongshanshan’ by regulating redox homeostasis[J]. Plants, 2025, 14(9): 1354. DOI: 10.3390/plants14091354. |
| [72] | YAN An, BORG M, BERGER F, et al. The atypical histone variant H3.15 promotes callus formation in Arabidopsis thaliana[J]. Development, 2020, 147(11): dev184895. DOI: 10.1242/dev.184895. |
| [73] | ABDALLA N, EL-RAMADY H, SELIEM M K, et al. An academic and technical overview on plant micropropagation challenges[J]. Horticulturae, 2022, 8(8): 677. DOI: 10.3390/horticulturae8080677. |
| [74] | POURCEL L, ROUTABOUL J M, CHEYNIER V, et al. Flavonoid oxidation in plants: from biochemical properties to physiological functions [J]. Trends in Plant Science, 2007, 12(1): 29−36. DOI: 10.1016/j.tplants.2006.11.006. |
| [75] | SHANG Wenqian, WANG Zheng, HE Songlin, et al. Research on the relationship between phenolic acids and rooting of tree peony (Paeonia suffruticosa) plantlets in vitro [J]. Scientia Horticulturae, 2017, 224: 53−60. DOI: 10.1016/j.scienta.2017.04.038. |
| [76] | MA C, GODDARD A, PEREMYSLOVA E, et al. Factors affecting in vitro regeneration in the model tree Populus trichocarpa I. Medium, environment, and hormone controls on organogenesis [J]. In Vitro Cellular & Developmental Biology-Plant, 2022, 58(6): 837−852. |
| [77] | SHARMA V, ANKITA, KARNWAL A, et al. A comprehensive review uncovering the challenges and advancements in the in vitro propagation of Eucalyptus plantations[J]. Plants, 2023, 12(17): 3018. DOI: 10.3390/plants12173018. |
| [78] | VALL-LLAURA N, TORRES R, TEIXIDÓ N, et al. Untangling the role of ethylene beyond fruit development and ripening: a physiological and molecular perspective focused on the Monilinia-peach interaction[J]. Scientia Horticulturae, 2022, 301: 111123. DOI: 10.1016/j.scienta.2022.111123. |
| [79] | CHEONG E J. Organogenesis from callus derived from in vitro root tissues of wild Prunus yedoensis Matsumura [J]. Journal of Forest and Environmental Science, 2019, 35(1): 41−46. |
| [80] | GAILIS A, SAMSONE I, ŠĒNHOFA S, et al. Silver birch (Betula pendula Roth. ) culture initiation in vitro and genotype determined differences in micropropagation [J]. New Forests, 2021, 52(5): 791−806. DOI: 10.1007/s11056-020-09828-9. |
| [81] | VAHDATI K, SADEGHI-MAJD R, SESTRAS A F, et al. Clonal propagation of walnuts (Juglans spp. ): a review on evolution from traditional techniques to application of biotechnology[J]. Plants, 2022, 11(22): 3040. DOI: 10.3390/plants11223040. |
| [82] | YANG Jie, GU Dachuan, WU Shuhua, et al. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis)[J]. Horticulture Research, 2021, 8: 253. DOI: 10.1038/s41438-021-00679-9. |