[1] TOROK M, ETKIN L D. Two B or not two B? Overview of the rapidly expanding B-box family of proteins [J]. Differentiation, 2001, 67(3): 63 − 71.
[2] ROBSON F, COSTA M M, HEPWORTH S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants [J]. Plant J, 2001, 28(6): 619 − 631.
[3] YAMASHINO T, YAMAWAKI S, HAGUI E, et al. Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus(Ⅰ) verification of the flowering associated function of an FT homolog [J]. Biosci,Biotechnol,Biochem, 2013, 77(6): 747 − 753.
[4] GRIFFITHS S, DUNFORD R P, COUPLAND G, et al. The evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis [J]. Plant Physiol, 2003, 131(4): 1855 − 1867.
[5] CHIA T Y, MULLER A, JUNG C, et al. Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus [J]. J Exp Bot, 2008, 59(10): 2735 − 2748.
[6] ROBERT L S, ROBSON F, SHARPE A, et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus [J]. Plant Mol Biol, 1998, 37(5): 763 − 772.
[7] NEMOTO Y, KISAKA M, TAKUICHI F, et al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice [J]. Plant J, 2003, 36(1): 82 − 93.
[8] HOLEFORS A, OPSETH L M, ROSNES A K R, et al. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce [J]. Plant Physiol Biochem, 2009, 47(2): 105 − 115.
[9] ALMADA R, CABRERA N, CASARETTO J A, et al. VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds [J]. Plant Cell Rep, 2009, 28(8): 1193 − 1203.
[10] SUÁREZ-LÓPEZ P, WHEATLEY K, ROBSON F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis [J]. Nature, 2001, 410(6832): 1116 − 1120.
[11] SONG Y H, SMITH R W, TO B J, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering [J]. Science, 2012, 336(6084): 1045 − 1049.
[12] LUCCIONI L, KRZYMUSKI M, SÁNCHEZ-LAMAS M, et al. CONSTANS delays Arabidopsis flowering under short days [J]. Plant J, 2019, 97(5): 923 − 932.
[13] CHENG Xiaofei, WANG Zengyu. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana [J]. Plant J, 2005, 43(5): 758 − 768.
[14] WU Weixun, ZHANG Yingxin, ZHANG Miao, et al. The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1 [J]. Biochem Biophy Res Commun, 2018, 495(1): 1349 − 1355.
[15] FU Jianxin, YANG Liwei, DAI Silan. Identification and characterization of the CONSTANS -like gene family in the short-day plant Chrysanthemum lavandulifolium [J]. Mol Genet Genomics, 2015, 290(3): 1039 − 1054.
[16] LIU Jun, CHENG Zhanchao, LI Xiangyu, et al. Expression analysis and regulation network identification of the CONSTANS-Like gene family in moso bamboo (Phyllostachys edulis) under photoperiod treatments [J]. DNA Cell Biol, 2019, 38(7): 607 − 626.
[17] XIAO Guohui, LI Bingjuan, CHEN Hongjuan, et al. Overexpression of PvCO1, a bamboo CONSTANS-LIKE gene, delays flowering by reducing expression of the FT gene in transgenic Arabidopsis [J]. BMC Plant Biol, 2018, 18(1): 232 − 247.
[18] LI Juan, GAO Kai, YANG Xiaoyu, et al. Identification and characterization of the CONSTANS-like gene family and its expression profiling under light treatment in Populus [J]. Int J Biol Macromol, 2020, 161: 999 − 1010.
[19] YAN Jiaping, MAO Dun, LIU Xiaomeng, et al. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba [J]. Plant Cell Rep, 2017, 36(9): 1387 − 1399.
[20] OHMIYA A, ODA-YAMAMIZO C, KISHIMOTO S. Overexpression of CONSTANS-like 16 enhances chlorophyll accumulation in petunia corollas [J]. Plant Sci, 2019, 280: 90 − 96.
[21] MIN J H, CHUNG J S, LEE K H, et al. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis [J]. J Integrative Plant Biol, 2015, 57(3): 313 − 324.
[22] WANG Honggui, ZHANG Zenglin, LI Hongyu, et al. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis [J]. J Exp Bot, 2013, 64(4): 1017 − 1024.
[23] 王淋. 杜仲橡胶合成相关酶基因的克隆及功能研究[D]. 长沙: 中南林业科技大学, 2014.

WANG Lin. Cloning and Function Analysis of Related Genes Involved in Rubber Biosynthesis of Eucommia ulmoides[D]. Changsha: Central South University of Forestry and Technology, 2014.
[24] TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30(12): 2725 − 2729.
[25] LI Long, LIU Minhao, SHI Kan. Dynamic changes in metabolite accumulation and the transcriptome during leaf growth and development in Eucommia ulmoides[J/OL]. Int J Mol Sci, 2019, 20(16): 4030[2021-05-20]. doi: 10.3390/ijms20164030.
[26] YE Jing, HAN Wenjing, FAN Ruisheng, et al. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to eu-rubber biosynthesis in Eucommia ulmoides[J/OL]. Genes, 2019, 10(8): 623[2021-05-20]. doi: 10.3390/genes10080623.
[27] CHEN Chengjie, CHEN Hao, ZHANG Yi, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194 − 1202.
[28] YE Jing, JIN Cangfu, LI Nan, et al. Selection of suitable reference genes for qRT-PCR normalization under different experimental conditions in Eucommia ulmoides Oliv[J/OL]. Sci Rep, 2018, 8(1): 15043[2021-05-15]. doi: 10.1038/s41598-018-3342-w.
[29] 杜红岩. 中国杜仲图志[M]. 北京: 中国林业出版社, 2014: 24 − 25.

DU Hongyan. China Eucommia Pictorial[M]. Beijing: China Forestry Publishing House, 2014: 24 − 25.
[30] 付建新, 王翊, 戴思兰. 高等植物CO基因研究进展[J]. 分子植物育种, 2010, 8(5): 1008 − 1016.

FU Jianxin, WANG Yi, DAI Silan. Advanced research on CO genes in higher plants [J]. Mol Plant Breed, 2010, 8(5): 1008 − 1016.
[31] 帅敏敏, 张启香, 黄有军. 光周期途径成花关键基因CONSTANS的进化机制[J]. 浙江农林大学学报, 2019, 36(1): 7 − 13.

SHUAI Minmin, ZHANG Qixiang, HUANG Youjun. Evolution of the flowering time gene CONSTANS in a photoperiod pathway [J]. J Zhejiang A&F Univ, 2019, 36(1): 7 − 13.
[32] DATTA S, HETTIARACHCHI G H C M, DENG Xingwang, et al. ArabidopsisCONSTANS-LIKE3 is a positive regulator of red light signaling and root growth [J]. Plant Cell, 2006, 18(1): 70 − 84.
[33] HASSIDIM M, HARIR Y, YAKIR E, et al. Over-expression of CONSTANS-LIKE5 can induce flowering in short-day grown Arabidopsis [J]. Planta, 2009, 230(3): 481 − 491.
[34] HAYAMA R, AGASHE B, LULEY E, et al. A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis [J]. Plant Cell, 2007, 19(10): 2988 − 3000.
[35] MARTIN J, STORGAARD M, ANDERSEN C H, et al. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog [J]. Plant Mol Biol, 2004, 56(2): 159 − 169.
[36] BÖHLENIUS H, HUANG Tao, CHARBONNEL-CAMPAA L, et al. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees [J]. Science, 2006, 312(5776): 1040 − 1043.
[37] TAKASE T, KAKIKUBO Y, NAKASONE A, et al. Characterization and transgenic study of CONSTANS-LIKE8(COL8) gene in Arabidopsis thaliana: expression of 35SCOL8 delays flowering under long-day conditions [J]. Plant Biotechnol, 2011, 28(5): 439 − 446.
[38] ZHANG Zenglin, JI Ronghuan, LI Hongyu, et al. CONSTANS-LIKE7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis [J]. Mol Plant, 2014, 7(9): 1429 − 1440.
[39] ZHANG Xiuming, ZHANG Li, JI Miaomiao, et al. Genome-wide identification and expression analysis of the B-box transcription factor gene family in grapevine (Vitis vinifera L. )[J/OL]. BMC Genomics, 2021, 22(1): 22[2021-05-15]. doi: 10.1186/s12864-021-07479-4.
[40] XU Guixia, GUO Chunce, SHAN Hongyan, et al. Divergence of duplicate genes in exon-intron structure [J]. Proc Natl Acad Sci, 2012, 109(4): 1187 − 1192.
[41] LIU Jiayou, YU Jianping, MCINTOSH L, et al. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering [J]. Plant Physiol, 2001, 125(4): 1821 − 1830.
[42] KIM S J, MOON J H, LEE I, et al. Molecular cloning and expression analysis of a CONSTANS homologue, PnCOL1, from Pharbitis nil [J]. J Exp Bot, 2003, 54(389): 1879 − 1887.
[43] CHAURASIA A K, PATIL H B, AZEEZ A, et al. Molecular characterization of CONSTANS-Like(COL) genes in banana (Musa acuminata L. AAA Group, cv. Grand Nain) [J]. Physiol Mol Biol Plants, 2016, 22(1): 1 − 15.
[44] DING Jihua, BÖHLENIUS H, RÜHL M G, et al. GIGANTEA-like genes control seasonal growth cessation in Populus [J]. New Phytol, 2018, 218(4): 1491 − 1503.
[45] KIM S K, YUN C H, LEE J H, et al. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice [J]. Planta, 2008, 228(2): 355 − 365.
[46] SHENG Peike, WU Fuqing, TAN Junjie, et al. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice [J]. Plant Mol Biol, 2016, 92(1/2): 209 − 222.
[47] TAN Junjie, JIN Mingna, WANG Jiachang, et al. OsCOL10, a CONSTANS-Like gene, functions as a flowering time repressor downstream of Ghd7 in rice [J]. Plant Cell Physiol, 2016, 57(4): 798 − 812.
[48] CAMPOLI C, DROSSE B, SEARLE I, et al. Functional characterisation of HvCO1, the barley (Hordeum vulgare) flowering time ortholog of CONSTANS [J]. Plant J, 2012, 69(5): 868 − 880.
[49] 朱利利, 杜庆鑫, 何凤, 等. 杜仲雄花芽2个发育时期转录组分析[J]. 植物研究, 2020, 40(2): 284 − 292.

ZHU Lili, DU Qingxin, HE Feng. Sequencing analysis of transcriptome of male floral bud at two development stages in Eucommia ulmoides [J]. Plant Res, 2020, 40(2): 284 − 292.
[50] MORITA R, SUGINO M, HATANAKA T, et al. CO2-responsive CONSTANS, CONSTANS-like, and time of chlorophyll a/b binding protein expression protein is a positive regulator of starch synthesis in vegetative organs of rice [J]. Plant Physiol, 2015, 167(4): 1321 − 1331.
[51] NAGAOKA S, TAKANO T. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis [J]. J Exp Bot, 2003, 54(391): 2231 − 237.
[52] YANG Yingjie, MA Chao, XU Yanjie, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis [J]. Plant Cell, 2014, 26(5): 2038 − 2054.
[53] TAKUHARA Y, KOBAYASHI M, SUZUKI S. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants [J]. J Plant Physiol, 2011, 168(9): 967 − 975.
[54] KOBAYASHI M, HORIUCHI H, FUJITA K, et al. Characterization of grape C-repeat-binding factor 2 and B-box-type zinc finger protein in transgenic Arabidopsis plants under stress conditions [J]. Mol Biol Rep, 2012, 39(8): 7933 − 7939.
[55] ALABADÍ D, OYAMA T, YANOVSKY M J, et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J]. Science, 2001, 293(5531): 880 − 883.
[56] GREEN R M, TOBIN E M. The role of CCA1 and LHY in the plant circadian clock [J]. Dev Cell, 2002, 2(5): 516 − 518.