[1] RAHMAN S U, KHAN M O, ULLAH R, et al. Agrobacterium-mediated transformation for the development of transgenic crops; present and future prospects[J]. Molecular Biotechnology, 2024, 66(8): 1836−1852.
[2] 张晓琳, 纵丹, 李嘉其, 等. 滇杨组织培养再生及遗传转化体系建立[J]. 浙江农林大学学报, 2024, 41(2): 314−321.

ZHANG Xiaolin, ZONG Dan, LI Jiaqi, et al. Regeneration system and genetic transformation of Populus yunnanensis [J]. Journal of Zhejiang A&F University, 2024, 41(2): 314−321.
[3] KHATUN M, BORPHUKAN B, ALAM I, et al. An improved Agrobacterium mediated transformation and regeneration protocol for successful genetic engineering and genome editing in eggplant[J/OL]. Scientia Horticulturae, 2022, 293: 110716[2025-08-01]. DOI: 10.1016/j.scienta.2021.110716.
[4] WU Minyi, CHEN Ao, LI Xiaomeng, et al. Advancements in delivery strategies and non-tissue culture regeneration systems for plant genetic transformation[J/OL]. Advanced Biotechnology, 2024, 2(4): 34[2025-08-01]. DOI: 10.1007/s44307-024-00041-9.
[5] QUIROZ L F, KHAN M, GONDALIA N, et al. Tissue culture-independent approaches to revolutionizing plant transformation and gene editing[J/OL]. Horticulture Research, 2024, 12(2): uhae292[2025-08-01]. DOI: 10.1093/hr/uhae292.
[6] LAMBOLEZ A, KAWAMURA A, TAKAHASHI T, et al. Warm temperature promotes shoot regeneration in Arabidopsis thaliana [J]. Plant & Cell Physiology, 2022, 63(5): 618−634.
[7] KAUSCH A P, WANG Kan, KAEPPLER H F, et al. Maize transformation: history, progress, and perspectives[J/OL]. Molecular Breeding, 2021, 41(6): 38[2025-08-01]. DOI: 10.1007/s11032-021-01225-0.
[8] 马曦, 张金睿, 庄红梅, 等. 发根农杆菌介导的芜菁高效遗传转化体系建立[J]. 园艺学报, 2025, 52(5): 1389−1398.

MA Xi, ZHANG Jinrui, ZHUANG Hongmei, et al. Establishment of an efficient genetic transformation system mediated by Agrobacterium rhizogenes in turnip [J]. Acta Horticulturae Sinica, 2025, 52(5): 1389−1398.
[9] XU Hu, GUO Yong, QIU Lijuan, et al. Progress in soybean genetic transformation over the last decade[J/OL]. Frontiers in Plant Science, 2022, 13: 900318[2025-08-01]. DOI: 10.3389/fpls.2022.900318.
[10] 胡欢, 李媛, 丁筠, 等. 农杆菌介导遗传转化获得转CP4基因籼稻的研究[J]. 浙江农林大学学报, 2021, 38(2): 420−425.

HU Huan, LI Yuan, DING Yun, et al. Agrobacterium-mediated transformation of CP4 gene into indica rice [J]. Journal of Zhejiang A&F University, 2021, 38(2): 420−425.
[11] ZHANG Yue, QIN Chunxiao, LIU Shijia, et al. Establishment of an efficient Agrobacterium-mediated genetic transformation system in halophyte Puccinellia tenuiflora[J/OL]. Molecular Breeding, 2021, 41(9): 55[2025-08-01]. DOI: 10.1007/s11032-021-01247-8.
[12] 叶如梅, 汪长天, 韩潇, 等. 闽楠叶片原生质体分离及瞬时转化体系的建立[J]. 浙江农林大学学报, 2025, 42(3): 592−600.

YE Rumei, WANG Changtian, HAN Xiao, et al. Establishment of protoplast isolation and transient expression system in Phoebe bournei leaves [J]. Journal of Zhejiang A&F University, 2025, 42(3): 592−600.
[13] HUANG Zhiwei, ZOU Junnan, GUO Minliang, et al. An aerotaxis receptor influences invasion of Agrobacterium tumefaciens into its host[J/OL]. PeerJ, 2024, 12: e16898[2025-08-01]. DOI: 10.7717/peerj.16898.
[14] NEELAKANDAN A K, KABAHUMA M, YANG Qin, et al. Characterization of integration sites and transfer DNA structures in Agrobacterium-mediated transgenic events of maize inbred B104[J/OL]. G3, 2023, 13(10): jkad166[2025-08-01]. DOI: 10.1093/g3journal/jkad166.
[15] SWACKHAMMER A, PROVENCHER E A P, DONKOR A K, et al. Mechanistic analysis of the VirA sensor kinase in Agrobacterium tumefaciens using structural models[J/OL]. Frontiers in Microbiology, 2022, 13: 898785[2025-08-01]. DOI: 10.3389/fmicb.2022.898785.
[16] ZHAO Pei, WANG Ke, LIN Zhishan, et al. Cloning and characterization of TaVIP2 gene from Triticum aestivum and functional analysis in Nicotiana tabacum[J/OL]. Scientific Reports, 2016, 6: 37602[2025-08-01]. DOI: 10.1038/srep37602.
[17] LIU Yukun, KONG Xiangpei, PAN Jiaowen, et al. VIP1: linking Agrobacterium-mediated transformation to plant immunity? [J]. Plant Cell Reports, 2010, 29(8): 805−812.
[18] ZHONG Heng, ELUMALAI S, LI Changbao, et al. Development of high-throughput tissue culture-free plant transformation systems[J/OL]. The Plant Journal, 2025, 121(1): e17163[2025-08-01]. DOI: 10.1111/tpj.17163.
[19] SEBIANI-CALVO A, HERNÁNDEZ-SOTO A, HENSEL G, et al. Crop genome editing through tissue-culture-independent transformation methods[J/OL]. Frontiers in Genome Editing, 2024, 6: 1490295[2025-08-01]. DOI: 10.3389/fgeed.2024.1490295.
[20] YE Xudong, SHRAWAT A, MOELLER L, et al. Agrobacterium-mediated direct transformation of wheat mature embryos through organogenesis[J/OL]. Frontiers in Plant Science, 2023, 14: 1202235[2025-08-01]. DOI: 10.3389/fpls.2023.1202235.
[21] HAO Siyi, ZHANG Yongyan, LI Ruide, et al. Agrobacterium-mediated in planta transformation of horticultural plants: current status and future prospects[J/OL]. Scientia Horticulturae, 2024, 325: 112693[2025-08-01]. DOI: 10.1016/j.scienta.2023.112693.
[22] YE Xudong, SHRAWAT A, WILLIAMS E, et al. Commercial scale genetic transformation of mature seed embryo explants in maize[J/OL]. Frontiers in Plant Science, 2022, 13: 1056190[2025-08-01]. DOI: 10.3389/fpls.2022.1056190.
[23] FELDMANN K A, DAVID MARKS M. Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach [J]. Molecular and General Genetics MGG, 1987, 208(1): 1−9.
[24] TAMIZI A A, MD-YUSOF A A, MOHD-ZIM N A, et al. Agrobacterium-mediated in planta transformation of cut coleoptile: a new, simplified, and tissue culture-independent method to deliver the CRISPR/Cas9 system in rice [J]. Molecular Biology Reports, 2023, 50(11): 9353−9366.
[25] ZHONG Heng, LI Changbao, YU Wenjin, et al. A fast and genotype-independent in planta Agrobacterium-mediated transformation method for soybean[J/OL]. Plant Communications, 2024, 5(12): 101063[2025-08-01]. DOI: 10.1016/j.xplc.2024.101063.
[26] ARUN M, SUBRAMANYAM K, MARIASHIBU T S, et al. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars [J]. Applied Biochemistry and Biotechnology, 2015, 175(4): 2266−2287.
[27] LIU Zaochang, PARK B J, KANNO A, et al. The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L. ) with Lea gene [J]. Molecular Breeding, 2005, 16(3): 189−197.
[28] CHOPRA R, APARNA, SAINI R. Use of sonication and vacuum infiltration for Agrobacterium-mediated transformation of an Indian lentil (Lens culinaris Medik. ) cultivar [J]. Scientia Horticulturae, 2012, 143: 127−134.
[29] DATTGONDE N, TIWARI S, SAPRE S, et al. Genetic transformation of oat mediated by Agrobacterium is enhanced with sonication and vacuum infiltration[J/OL]. Iranian Journal of Biotechnology, 2019, 17(1): e1563[2025-08-01]. DOI: 10.21859/ijb.1563.
[30] KARTHIK S, PAVAN G, SATHISH S, et al. Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)][J]. 3 Biotech, 2018, 8(4): 202[2025-08-01]. DOI: 10.1007/s13205-018-1231-1.
[31] ABOOFAZELI N, KHOSRAVI S, BAGHERI H, et al. Conquering limitations: exploring the factors that drive successful Agrobacterium-mediated genetic transformation of recalcitrant plant species [J]. Molecular Biotechnology, 2025, 67(8): 3010−3026.
[32] DESFEUX C, CLOUGH S J, BENT A F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method [J]. Plant Physiology, 2000, 123(3): 895−904.
[33] CLOUGH S J, BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J]. The Plant Journal, 1998, 16(6): 735−743.
[34] AGARWAL S, LOAR S, STEBER C, et al. Floral transformation of wheat[M]//JONES H, SHEWRY P. Transgenic Wheat, Barley and Oats, Methods in Molecular Biology, Vol. 478. New Jersey: Humana Press, 2009.
[35] 王翠艳, 丁东风, 于晓菊, 等. Floral dip法在大豆遗传转化中的应用研究[J]. 南开大学学报(自然科学版), 2010, 43(1): 34−38.

WANG Cuiyan, DING Dongfeng, YU Xiaoju, et al. Application of floral dip on the transformation of soybean [J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2010, 43(1): 34−38.
[36] LI Juan, TAN Xiaoli, ZHU Fuge, et al. A rapid and simple method for Brassica napus floral-dip transformation and selection of transgenic plantlets [J]. International Journal of Biology, 2010, 2(1): 127−131.
[37] GAO Yang, REN Xiangliang, RUAN Songlin, et al. Genetic transformation of Chinese cabbage (Brassica rapa pekinensis) with floral-dip method [J]. Agricultural Biotechnology, 2012, 1(4): 22−24.
[38] SUN H J, UCHII S, WATANABE S, et al. A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics [J]. Plant & Cell Physiology, 2006, 47(3): 426−431.
[39] EAPEN S. Pollen grains as a target for introduction of foreign genes into plants: an assessment [J]. Physiology and Molecular Biology of Plants, 2011, 17(1): 1−8.
[40] MAHER M F, NASTI R A, VOLLBRECHT M, et al. Plant gene editing through de novo induction of meristems [J]. Nature Biotechnology, 2019, 38(1): 84−89.
[41] MEI Guoguo, CHEN Ao, WANG Yaru, et al. A simple and efficient in planta transformation method based on the active regeneration capacity of plants[J/OL]. Plant Communications, 2024, 5(4): 100822[2025-08-01]. DOI: 10.1016/j.xplc.2024.100822.
[42] HUANG Chen, YANG Chen, YANG Huifang, et al. Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method[J/OL]. Plant Methods, 2024, 20(1): 190[2025-08-01]. DOI: 10.1186/s13007-024-01314-z.
[43] LUO Baixue, ZHANG Li, ZHENG Feng, et al. Ovule development and in planta transformation of Paphiopedilum maudiae by Agrobacterium-mediated ovary-injection[J/OL]. International Journal of Molecular Sciences, 2020, 22(1): 84[2025-08-01]. DOI: 10.3390/ijms22010084.
[44] BAHARI Z, SAZEGARI S, NIAZI A, et al. The application of an Agrobacterium-mediated in planta transformation system in a Catharanthus roseus medicinal plant [J]. Czech Journal of Genetics and Plant Breeding, 2020, 56(1): 34−41.
[45] DENG Jie, LI Wenyun, LI Xiaomin, et al. A fast, efficient, and tissue-culture-independent genetic transformation method for Panax notoginseng and Lilium regale[J/OL]. Plants, 2024, 13(17): 2509[2025-08-01]. DOI: 10.3390/plants13172509.
[46] LIAN Zhaoyuan, NGUYEN C D, LIU Li, et al. Application of developmental regulators to improve in planta or in vitro transformation in plants [J]. Plant Biotechnology Journal, 2022, 20(8): 1622−1635.
[47] CAO Xuesong, XIE Hongtao, SONG Minglei, et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture[J/OL]. The Innovation, 2023, 4(1): 100345[2025-08-01]. DOI: 10.1016/j.xinn.2022.100345.
[48] CAO Xuesong, XIE Hongtao, SONG Minglei, et al. Extremely simplified cut-dip-budding method for genetic transformation and gene editing in Taraxacum koksaghyz[J/OL]. The Innovation Life, 2023, 1(3): 100040[2025-08-01]. DOI: 10.59717/j.xinn-life.2023.100040.
[49] LU Jinghua, LI Shanshan, DENG Shuai, et al. A method of genetic transformation and gene editing of succulents without tissue culture [J]. Plant Biotechnology Journal, 2024, 22(7): 1981−1988.
[50] 鞠琳璐. 桃非组培遗传转化体系初探[D]. 武汉: 华中农业大学, 2023.

JU Linlu. Preliminary Study on Non-tissue Culture Genetic Transformation System of Peach[D]. Wuhan: Huazhong Agricultural University, 2023.
[51] CAO Xuesong, XIE Hongtao, SONG Minglei, et al. Simple method for transformation and gene editing in medicinal plants [J]. Journal of Integrative Plant Biology, 2024, 66(1): 17−19.
[52] 陈赢男, 胡传景, 诸葛强, 等. 杨树农杆菌遗传转化研究30年[J]. 林业科学, 2022, 58(12): 114−129.

CHEN Yingnan, HU Chuanjing, ZHUGE Qiang, et al. Thirty years of Agrobacterium-mediated genetic transformation of Populus [J]. Scientia Silvae Sinicae, 2022, 58(12): 114−129.
[53] WEAVER J C. Electroporation theory: concepts and mechanisms [M]// NICKOLOFF J A. Plant Cell Electroporation and Electrofusion Protocols, Methods in Molecular Biology, Vol. 55. New Jersey: Humana Press, 2003.
[54] OZYIGIT I I. Gene transfer to plants by electroporation: methods and applications [J]. Molecular Biology Reports, 2020, 47(4): 3195−3210.
[55] SUBBURAJ S, AGAPITO-TENFEN S Z. Establishment of targeted mutagenesis in soybean protoplasts using CRISPR/Cas9 RNP delivery via electro-transfection[J/OL]. Frontiers in Plant Science, 2023, 14: 1255819[2025-08-01]. DOI: 10.3389/fpls.2023.1255819.
[56] ZULFIQAR S, FAROOQ M A, ZHAO Tiantian, et al. Virus-induced gene silencing (VIGS): a powerful tool for crop improvement and its advancement towards epigenetics[J/OL]. International Journal of Molecular Sciences, 2023, 24(6): 5608[2025-08-01]. DOI: 10.3390/ijms24065608.
[57] 冯梦琦, 王若雨, 司马璐, 等. 植物非组培遗传转化体系及其应用[J]. 华中农业大学学报, 2025, 44(2): 228−242.

FENG Mengqi, WANG Ruoyu, SIMA Lu, et al. Genetic transformation system of plants with non-tissue culture and its application [J]. Journal of Huazhong Agricultural University, 2025, 44(2): 228−242.
[58] CHENG Jun, SHAO Yun, HU Xinyue, et al. A simple and efficient gene functional analysis method for studying the growth and development of peach seedlings[J/OL]. Horticulture Research, 2024, 11(7): uhae155[2025-08-01]. DOI: 10.1093/hr/uhae155.
[59] 刘倩. 番茄斑萎病毒介导的CRISPR核酸酶递送及其在多种作物基因编辑中的应用[D]. 杭州: 浙江大学, 2023.

LIU Qian. Tomato Spotted Wilt Virus-based CRISPR/cas Delivery Systems for Targeted Genome Editing in Multiple Crops[D]. Hangzhou: Zhejiang University, 2023.
[60] BAEK W, BAE Y, LIM C W, et al. Pepper homeobox abscisic acid signalling-related transcription factor 1, CaHAT1, plays a positive role in drought response [J]. Plant, Cell & Environment, 2023, 46(7): 2061−2077.
[61] TIAN Yue, FANG Yao, ZHANG Kaixin, et al. Applications of virus-induced gene silencing in cotton[J/OL]. Plants, 2024, 13(2): 272[2025-08-01]. DOI: 10.3390/plants13020272.
[62] ZHANG Yao, NIU Nazi, LI Shijia, et al. Virus-induced gene silencing (VIGS) in Chinese jujube[J/OL]. Plants, 2023, 12(11): 2115[2025-08-01]. DOI: 10.3390/plants12112115.
[63] HII A R K, QI Xiaole, WU Zhenghong. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers [J]. Journal of Materials Chemistry B, 2024, 12(6): 1467−1489.
[64] RABIEE N, BAGHERZADEH M, GHADIRI A M, et al. ZnAl nano layered double hydroxides for dual functional CRISPR/Cas9 delivery and enhanced green fluorescence protein biosensor[J/OL]. Scientific Reports, 2020, 10: 20672[2025-08-01]. DOI: 10.1038/s41598-020-77809-1.
[65] DEBERNARDI J M, TRICOLI D M, ERCOLI M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants [J]. Nature Biotechnology, 2020, 38(11): 1274−1279.
[66] MAREN N A, DUAN Hui, DA Kedong, et al. Genotype-independent plant transformation[J/OL]. Horticulture Research, 2022, 9: uhac047[2025-08-01]. DOI: 10.1093/hr/uhac047.
[67] ZHOU Guangyu, WENG Jia, ZENG Yishen, et al. Introduction of exogenous DNA into cotton embryos [J]. Methods in Enzymology, 1983, 101: 433−481.
[68] CHATTERJEE A, PURKAYSTHA S, BHATTACHARYYA S, et al. Genetic engineering and genome editing for enhancing nutritional quality of legumes[M]//MATHUR P, GUPTA A. Recent Trends and Applications of Leguminous Microgreens as Functional Foods. Cham: Springer Nature Switzerland, 2025: 389−419.
[69] ALI Z, EID A, ALI S, et al. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis [J]. Virus Research, 2018, 244: 333−337.
[70] LI Xinxin, GAO Yuehao, MA Haowen, et al. Non-tissue culture genetic modifications for plant improvement[J/OL]. Plant Molecular Biology, 2025, 115(3): 67[2025-08-01]. DOI: 10.1007/s11103-025-01594-6.
[71] YANG Lei, MACHIN F, WANG Shuangfeng, et al. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks [J]. Nature Biotechnology, 2023, 41(7): 958−967.