[1] LIU Xuejun, ZHANG Ying, HAN Wenxuan, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494(7438): 459 − 462.
[2] ZHANG L, JACOB D J, KUMAR K N, et al. Nitrogen deposition to the United States: distribution, sources, and processes [J]. Atmospheric Chemistry and Physics, 2012, 12: 4539 − 4554.
[3] FOWLER D, COYLE M, SKIBA U, et al. The global nitrogen cycle in the twenty-first century [J/OL]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1621): 20130164[2023-06-20]. doi: 10.1098/rstb.2013.0164.
[4] ACKERMAN D, MILLET D B, CHEN Xin. Global estimate of inorganic nitrogen deposition across four decades [J]. Global Biogeochemical Cycles, 2019, 33(1): 100 − 107.
[5] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70: 153 − 226.
[6] DIRNBÖCK T, PROLL G, AUSTNES K, et al. Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests [J/OL]. Environmental Research Letters, 2018, 13(12): 125010[2023-06-20]. doi: 10.1088/1748-9326/aaf26b.
[7] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089 − 1097.

ZHENG Dannan, WANG Xuesong, XIE Shaodong, et al. Simulation of atmospheric nitrogen deposition in China in 2010 [J]. China Environmental Science, 2014, 34(5): 1089 − 1097.
[8] ZHANG Wen, WEN Xu, QI Li, et al. Changes of nitrogen deposition from 1980−2018 [J/OL]. Environment International, 2020, 144: 106022[2023-06-20]. doi: 10.1016/j.envint.2020.106022.
[9] ZHU Jianxing, ZHI Chen, WANG Qiufeng, et al. Potential transition in the effects of atmospheric nitrogen deposition in China [J/OL]. Environmental Pollution, 2020, 258: 113739[2023-06-20]. doi: 10.1016/j.envpol.2019.113739.
[10] 生态环境部. 2016—2019年全国生态环境统计公报[R/OL]. (2020-12-14)[2023-05-06]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf.

Ministry of Ecology and Environmental of People’s Republic of China. National Ecological Environment Statistical Bulletin from 2016−2019 [R/OL]. (2020-12-14)[2023-05-06]. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/202012/P020201214580320276493.pdf.
[11] ZHENG Bo, TONG Dan, LI Meng, et al. Trends in China’ s anthropogenic emissions since 2010 as the consequence of clean air actions [J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14095 − 14111.
[12] 谢丹妮, 仰东星, 段雷. 森林生态系统对大气氮沉降降低的响应[J]. 环境科学, 2023, 44(5): 2681 − 2693.

XIE Danni, YANG Dongxing, DUAN Lei. Response of forest ecosystems to decreasing atmospheric nitrogen deposition [J]. Environmental Science, 2023, 44(5): 2681 − 2693.
[13] DU E Z, FENN M E, de VRIES W, et al. Atmospheric nitrogen deposition to global forests: status, impacts and management options [J]. Environmental Pollution, 2019, 250: 1044 − 1048.
[14] SCHWEDE D B, SIMPSON D, TAN J, et al. Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale [J]. Environmental Pollution, 2018, 243: 1287 − 1301.
[15] BOXMAN A W, VEN P J M, ROELOFS J G M. Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyen, the Netherlands [J]. Forest Ecology and Management, 1998, 101(1/3): 155 − 163.
[16] BOXMAN A W, ROELOFS J G M. Effects of liming, sod-cutting and fertilization at ambient and decreased nitrogen deposition on the soil solution chemistry in a Scots pine forest in the Netherlands [J]. Forest Ecology and Management, 2006, 237(1/3): 237 − 245.
[17] BOXMAN A W, PETERS R, ROELOFS J G M. Long term changes in atmospheric N and S throughfall deposition and effects on soil solution chemistry in a Scots pine forest in the Netherlands [J]. Environmental Pollution, 2008, 156(3): 1252 − 1259.
[18] WALLACE Z P, LOVETT G M, HART J E, et al. Effects of nitrogen saturation on tree growth and death in a mixed-oak forest [J]. Forest Ecology Management, 2007, 243(2/3): 210 − 218.
[19] 陆晨东, 张六一, 夏利林, 等. 大气活性氮沉降临界负荷研究进展[J]. 地球与环境, 2021, 49(6): 750 − 756.

LU Chendong, ZHANG Liuyi, XIA Lilin, et al. Research progress on critical load of nitrogen deposition [J]. Earth and Environment, 2021, 49(6): 750 − 756.
[20] WANG Jianqing, SHI Xiuzhen, ZHENG Chengyang, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest [J/OL]. Science of the Total Environment, 2021, 755(1): 142449[2023-06-20]. doi: 10.1016/j.scitotenv.2020.142449.
[21] 余倩, 段雷, 郝吉明. 中国酸沉降: 来源、影响与控制[J]. 环境科学学报, 2021, 41(3): 731 − 746.

YU Qian, DUAN Lei, HAO Jiming. Acid deposition in China: sources, effects and control [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 731 − 746.
[22] LU Xiankai, VITOUSEK P M, MAO Qinggong, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 155(20): 5187 − 5192.
[23] XIE Danni, DUAN Lei, GAO Yueshi, et al. Long-term 15N balance after single-dose input of 15N-lableed \begin{document}${\rm{NH}}_4^ + $\end{document} and \begin{document}${\rm{NO}}_3^ - $\end{document} in a subtropical forest under reducing N deposition [J/OL]. Global Biogeochemical Cycles, 2021, 35(7): e2021GB006959[2023-06-20]. doi: 10.1029/2021GB006959.
[24] BRAUN S, THOMAS V F D, QUIRING R, et al. Does nitrogen deposition increase forest production? The role of phosphorus [J]. Environmental Pollution, 2010, 158(6): 2043 − 2052.
[25] LU Xiankai, MAO Qinggong, GILLIAM F S, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems [J]. Global Change Biology, 2014, 20(12): 3790 − 3801.
[26] TIAN Dashuan, NIU Shuli. A global analysis of soil acidification caused by nitrogen addition [J/OL]. Environmental Research Letters, 2015, 10(2): 024019[2023-06-20]. doi: 10.1088/1748-9326/10/2/024019.
[27] 鲁显楷, 莫江明, 张炜, 等. 模拟大气氮沉降对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5): 500 − 522.

LU Xiankai, MO Jiangming, ZHANG Wei, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China: an overview [J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 500 − 522.
[28] 付伟, 武慧, 赵爱花, 等. 陆地生态系统氮沉降的生态效应: 研究进展和展望[J]. 植物生态学报, 2020, 44(5): 475 − 493.

FU Wei, WU Hui, ZHAO Aihua, et al. Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 475 − 493.
[29] GUNDALE M J. The impact of anthropogenic nitrogen deposition on global forests: negative impacts far exceed the carbon benefits [J]. Global Change Biology, 2022, 28(3): 690 − 692.
[30] ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems-hypotheses revisited [J]. BioScience, 1998, 48(11): 921 − 934.
[31] HOGBERG M, YARWOOD S, MYROLD D. Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest [J]. Soil Biology and Biochemistry, 2014, 72: 35 − 43.
[32] HOGBERG M N, BLASKO R, BACH L H, et al. The return of an experimentally saturated boreal forest to an N-limited state: observations on the soil microbial community structure, biotic N retention capacity and gross N mineralization [J]. Plant and Soil, 2014, 381(1/2): 45 − 60.
[33] SCHMITZ A, SANDERS T, BOLTE A, et al. Responses of forest ecosystems in Europe to decreasing nitrogen deposition [J]. Environmental Pollution, 2019, 244: 980 − 994.
[34] GILLIAM F S. Response of temperate forest ecosystems under decreased nitrogen deposition: research challenges and opportunities [J/OL]. Forests, 2021, 12: 509[2023-06-20].doi: 10.3390/f12040509.
[35] POWER S A, GREEN E, BARKER C G, et al. Ecosystem recovery: heathland response to a reduction in nitrogen deposition [J]. Global Change Biology, 2006, 12(7): 1241 − 1252.
[36] STEVENS C J. How long do ecosystems take to recover from atmospheric nitrogen deposition? [J]. Biological Conservation, 2016, 200: 160 − 167.
[37] XIE Danni, ZHANG Ting, YU Qian, et al. A sharp decline in nitrogen input in a N-saturated subtropical forest causes an instantaneous reduction in nitrogen leaching [J]. Journal of Geophysical Research Biogeosciences, 2018, 123(10): 3320 − 3330.
[38] HOGBERG P, FAN Houbao, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12(3): 489 − 499.
[39] VERSTRETEN A, NEIRYNCK J, GENOUW G, et al. Impact of declining atmospheric deposition on forest soil solution chemistry in Flanders, Belgium [J]. Atmospheric Environment, 2017, 170: 334 − 335.
[40] BEIER C, BLANK K, BREDEMEIER M, et al. Field-scale ‘clean rain’ treatments to two Norway spruce stands within the EXMAN project-effects on soil solution chemistry, foliar nutrition and tree growth [J]. Forest Ecology and Management, 1998, 101(1/3): 111 − 123.
[41] LAMERSDORF N P, BORKEN W. Clean rain promotes fine root growth and soil respiration in a Norway spruce forest [J]. Global Change Biology, 2004, 10(8): 1351 − 1362.
[42] ENOWASHU E, POLL C, LAMERSDORF N, et al. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil [J]. Applied Soil Ecology, 2009, 43(1): 11 − 21.
[43] EMMETT B A, BOXMAN D, BREDEMEIER M, et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments [J]. Ecosystems, 1998, 1(4): 352 − 360.
[44] ARMITAGE H F, BRITTON A J, WOODIN S J, et al. Assessing the recovery potential of alpine moss-sedge heath: reciprocal transplants along a nitrogen deposition gradient [J]. Environmental Pollution, 2011, 159(1): 140 − 147.
[45] MITCHELL R J, SUTTON M A, TRUSCOTT M A, et al. Growth and tissue nitrogen of epiphytic Atlantic bryophytes: effects of increased and decreased atmospheric N deposition [J]. Functional Ecology, 2004, 18(3): 322 − 329.
[46] BRAUN S, SCHINDLER C, RIHM B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate [J]. Science of the Total Environment, 2017, 599: 637 − 646.
[47] FANG Yunting, GUNDERSEN P, MO Jiangming, et al. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China [J]. Forest Ecology and Management, 2009, 257(1): 332 − 342.
[48] JONARD M, LEGOUT A, NICOLAS M, et al. Deterioration of Norway spruce vitality despite a sharp decline in acid deposition: a long-term integrated perspective [J]. Global Change Biology, 2012, 18(2): 711 − 725.
[49] DRISCOLL C, DRISCOLL K, MITCHELL M, et al. Effects of acidic deposition on forest and aquatic ecosystems in New York State [J]. Environmental Pollution, 2003, 123(3): 327 − 336.
[50] HUANG Juan, ZHANG Wei, LI Yuelin, et al. Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations [J/OL]. Environmental Research Letters, 2021, 16(11): 114042[2023-06-20]. doi:10.1088/1748-9326/ac30bd.
[51] WAMELINK G W W, van DOBBEN H F, MOL-DIJKSTRA J P, et al. Effect of nitrogen deposition reduction on biodiversity and carbon sequestration [J]. Forest Ecology and Management, 2009, 258(8): 1774 − 1779.
[52] van DIJK H F G, BOXMAN A W, ROELOFS J G M. Effects of a decrease in atmospheric deposition of nitrogen and sulphur on the mineral balance and vitality of a Scots pine stand in the Netherlands [J]. Forest Ecology and Management, 1992, 51(1): 207 − 215.
[53] KOOPMANS C J, LUBRECHT W C, TIETEMA A. Nitrogen transformations in two nitrogen saturated forest ecosystems subjected to an experimental decrease in nitrogen deposition [J]. Pant Soil, 1995, 175(2): 205 − 218.
[54] STRENGBOM J, NORDIN A, NASHOLM T, et al. Slow recovery of boreal forest ecosystem following decreased nitrogen input [J]. Functional Ecology, 2001, 15(4): 451 − 457.
[55] VERSTRAETEN A, NEIRYNCKA J, COOLSA N, et al. Multiple nitrogen saturation indicators yield contradicting conclusions on improving nitrogen status of temperate forests [J]. Ecological Indicators, 2017, 82: 451 − 462.
[56] BOXMAN A W, van DAM D, van DIJK H F G, et al. Ecosystem responses to reduced nitrogen and sulphur inputs into two coniferous forest stands in the Netherlands [J]. Forest Ecology and Management, 1995, 71(1/2): 7 − 29.
[57] CLARK C M, MOREFIELD P, GILLIAM F S, et al. Estimated losses of plant biodiversity across the U. S. from historical N deposition from 1985−2010 [J]. Ecology, 2013, 94(7): 1441 − 1448.
[58] BOBBINK R, HICKS W K. Factors affecting nitrogen deposition impacts on biodiversity: an overview [M]. SUTTON M A, MASON K E, SHEPPARD L J, et al. Nitrogen Deposition, Critical Loads and Biodiversity: Dordrecht: Springer. 2014, 127 − 138.
[59] BERENDSE F, GEERTS R H E M, ELBERSE W T, et al. A matter of time: Recovery of plant species diversity in wild plant communities at declining nitrogen deposition [J]. Diversity and Disturbutions, 2021, 27(7): 1180 − 1193.
[60] DEVARAJU N, PRUDHOMME R, LUNGARSKA A, et al. Quantifying the benefits of reducing synthetic nitrogen application policy on ecosystem carbon sequestration and biodiversity [J/OL]. Scientific Reports, 2022, 12: 20715[2023-06-20]. doi:10.1038/s41598-022-24794-2.
[61] LU Xiankai, VITOUSEK P M, MAO Qinggong , et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests [J/OL]. Proceedings of the National Academy of Sciences, 2021, 118(16): e2020790118[2023-06-20]. doi:10.1073/pnas.2020790118.
[62] PERRING M P, DIEKMANN M, MIDOLO G, et al. Understanding context dependency in the response of forest understory plant communities to nitrogen deposition [J]. Environmental Pollution, 2018, 242: 1787 − 1799.
[63] PAYNE R J, DISE N B, FIELD C, et al. Nitrogen deposition and plant biodiversity: past, present, and future [J]. Frontiers in Ecology and the Environment, 2017, 15(8): 431 − 436.
[64] CARFRAE J A, SHEPPARD L J, RAVEN J A, et al. Early effects of atmospheric ammonia deposition on Calluna vulgaris (L.) Hull growing on an ombrotrophic peat bog [J]. Water,Air,&Soil Pollution, 2004, 4: 229 − 239.
[65] CLARK C M, SIMKIN S M, ALLEN E B, et al. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States [J]. Nature Plants, 2019, 5(7): 697 − 705.
[66] STEVENS C J, DUPRE C, DORLAND E, et al. Nitrogen deposition threatens species richness of grasslands across Europe [J]. Environmental Pollution, 2010, 158(9): 2940 − 2945.
[67] QUIST M E, NASHOLM T, LINDEBERG J, et al. Response of a nitrogen-saturated forest to a sharp decrease in nitrogen input [J]. Journal of Environmental Quality, 1999, 28(6): 1970 − 1977.
[68] ROWE E C, JONES L, DISE N B, et al. Metrics for evaluating the ecological benefits of decreased nitrogen deposition [J]. Biological Conservation, 2017, 212: 454 − 463.
[69] KAMMER P M, RIHM B, SCHOB C. Decreasing nitrogen deposition rate: good news for oligotrophic grassland species? [J]. Basic and Applied Ecology, 2022, 63: 125 − 138.
[70] ZHANG Tianan, CHEN H Y H, RUAN Honghua. Global negative effects of nitrogen deposition on soil microbes [J]. The ISME Journal, 2018, 12(7): 1817 − 1825.
[71] LIU Lingli, GREAVER T L. A global perspective on belowground carbon dynamics under nitrogen enrichment [J]. Ecology Letters, 2010, 13(7): 819 − 828.
[72] HÖGBERG P, JOHANNISSON C, YARWOOD S, et al. Recovery of ectomycorrhiza after ‘nitrogen saturation’ of a conifer forest [J]. New Phytologist, 2011, 189(2): 515 − 525.
[73] FREY S D, OLLINGER S, NADELHOFFER K, et al. Chronicnitrogen additions suppress decomposition and sequester soil carbon in a temperate forest [J]. Biogeochemistry, 2014, 121: 305 − 316.
[74] FREY S D, KNORR M, PARRENT J, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in a forest ecosystem [J]. Forest Ecology and Management, 2004, 196(1): 159 − 171.
[75] CLINE L C, HUGGINS J A, HOBBIE S E, et al. Organic nitrogen addition suppresses fungal richness and alters community composition in temperate forest soils [J]. Soil Biology and Biochemistry, 2018, 125: 222 − 230.
[76] QIU Lingjun, LI Yunjie, ZHONG Qi, et al. Adaptation mechanisms of the soil microbial community under stoichiometric imbalances and nutrient-limiting conditions in a subtropical nitrogen-saturated forest [J/OL]. Plant Soil, 2023, 489(1/2): 239−258.
[77] SMITHWICK E A, EISSENSTAT D M, LOVETT G M, et al. Root stress and nitrogen deposition: consequences and research priorities [J]. New Phytologist, 2013, 197(3): 712 − 719.
[78] LILLESKOV E A, KUYPER T W, BIDARTONDO M I, et al. Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review [J]. Environmental Pollution, 2019, 246: 148 − 162.
[79] IPCC. The carbon cycle and atmospheric carbon dioxide[C]//HOUGHTON JT, DING Y, GRIGGS D J, et al. Climate Change 2001: The Scientific Basis. Cambridge University Press, 2001.
[80] REICH P B, HOBBIE S E, LEE T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 [J]. Nature, 2006, 440(7086): 922 − 925.
[81] FAN Houbao, WU Jianping, LIU Wenfei, et al. Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest [J]. Plant Soil, 2014, 379: 361 − 371.
[82] SHEN Fangfang, LIU Wenfei, DUAN Honglang, et al. High N storage but low N recovery after long-term N-fertilization in a subtropical Cunninghamia lanceolata plantation ecosystem: a 14-year case study [J/OL]. Frontiers in Plant Science, 2022, 13: 91416[2023-06-20]. doi:10.21203/rs.3.rs-705377/v1.
[83] THOMAS R Q, CANHAM C D, WEATHERS K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US [J]. Nature Geoscience, 2010, 3(1): 13 − 17.
[84] PREGITZER K S, BURTON A J, ZAK D R, et al. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests [J]. Global Change Biology, 2008, 14(1): 142 − 153.
[85] NGABA M J Y, UWIRAGIYE Y, BOL R, et al. Low-level nitrogen and short-term addition increase soil carbon sequestration in Chinese forest ecosystems [J/OL]. Catena, 2022, 215: 106333[2023-06-20]. doi: 10.1016/j.catena.2022.106333.
[86] JANSSENS I A, DIELEMAN W, LUYSSAERT S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geosicence, 2010, 3(5): 315 − 322.
[87] ZAK D R, FREEDMAN Z B, UPCHURCH R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition [J]. Global Change Biology, 2017, 23(2): 933 − 944.
[88] DENG Lei, HUANG Chunbo, KIM D G, et al. Soil GHG fluxes are altered by N deposition: new data indicate lower N stimulation of the N2O flux and greater stimulation of the calculated C pools [J]. Global Change Biology, 2020, 26(4): 2613 − 2629.
[89] EASTMAN B A, ADAMS M B, BRZOSTEK E R, et al. Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions [J]. New Phytologist, 2021, 230(4): 1435 − 1448.
[90] van MIEGROET H, JANDL R. Are nitrogen-fertilized forest soils sinks or sources of carbon? [J]. Environmental Monitoring and Assessment, 2007, 128: 121 − 131.
[91] LU Meng, ZHOU Xuhui, LUO Yiqi, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis [J]. Agriculture,Ecosystems &Environment, 2011, 140(1/2): 234 − 244.
[92] SUTTON M A, SIMPSON D, LEVY P, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration [J]. Global Change Biology, 2008, 14(9): 2057 − 2063.
[93] de VRIES W, POSCH M. Modelling the impact of nitrogen deposition, climate change and nutrient limitations on tree carbon sequestration in Europe for the period 1900−2050 [J]. Environment Pollution, 2011, 159(10): 2289 − 2299.
[94] VRIES W D, SOLBERG S, DOBBERTIN M, et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands [J]. Forest Ecology and Management, 2009, 258(8): 1814 − 1823.