[1] LI Xue, LI Ping, ZHENG Tangchun, et al. Genomic insights into the important ornamental and stress resistance traits of Prunus mume[J/OL]. Scientia Horticulturae, 2022, 302: 111179[2025-06-05]. DOI: 10.1016/j.scienta.2022.111179.
[2] 王兵, 赵会纳, 余婧, 等. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14−22.

WANG Bing, ZHAO Huina, YU Jing, et al. Research progress in the regulation of plant branch development [J]. Biotechnology Bulletin, 2023, 39(5): 14−22.
[3] XIONG Shifa, WANG Yangdong, CHEN Yicun, et al. The sucrose regulation of plant shoot branching[J/OL]. Horticulturae, 2024, 10(12): 1348[2025-06-05]. DOI: 10.3390/horticulturae10121348.
[4] 陈尚昱, 宋雪薇, 齐振宇, 等. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690−703.

CHEN Shangyu, SONG Xuewei, QI Zhenyu, et al. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690−703.
[5] LUO Zhiwei, JANSSEN B J, SNOWDEN K C. The molecular and genetic regulation of shoot branching [J]. Plant Physiology, 2021, 187(3): 1033−1044.
[6] 李丽冰, 李威涛, 刘依柔, 等. 植物分枝形成及影响分枝数主要因素的研究进展[J]. 植物遗传资源学报, 2024, 25(12): 2009−2019.

LI Libing, LI Weitao, LIU Yirou, et al. Research progress on branching formation and the main factors affecting branching number in plants [J]. Journal of Plant Genetic Resources, 2024, 25(12): 2009−2019.
[7] CAO Da, CHABIKWA T, BARBIER F, et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth [J]. Plant Physiology, 2023, 192(2): 1420−1434.
[8] XIA Xiaojian, DONG Han, YIN Yanling, et al. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2004384118[2025-06-05]. DOI: 10.1073/pnas.2004384118.
[9] WANG Lei, WANG Bing, YU Hong, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis [J]. Nature, 2020, 583(7815): 277−281.
[10] XIE Yurong, LIU Yang, MA Mengdi, et al. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J/OL]. Nature Communications, 2020, 11: 1955[2025-06-05]. DOI: 10.1038/s41467-020-15893-7.
[11] LUO Le, ZHANG Yali, XU Guohua. How does nitrogen shape plant architecture [J]. Journal of Experimental Botany, 2020, 71(15): 4415−4427.
[12] PANDA D, MISHRA S S, BEHERA P K. Drought tolerance in rice: focus on recent mechanisms and approaches [J]. Rice Science, 2021, 28(2): 119−132.
[13] YANG Yujie, AHMAD S, YANG Qingqing, et al. Decapitation experiments combined with the transcriptome analysis reveal the mechanism of high temperature on Chrysanthemum axillary bud formation[J/OL]. International Journal of Molecular Sciences, 2021, 22(18): 9704[2025-06-05]. DOI: 10.3390/ijms22189704.
[14] HOLBROOK-SMITH D, TOH S, TSUCHIYA Y, et al. Small-molecule antagonists of germination of the parasitic plant Striga hermonthica [J]. Nature Chemical Biology, 2016, 12(9): 724−729.
[15] DONG Han, WANG Jiachun, SONG Xuewei, et al. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(16): e2301879120[2025-06-05]. DOI: 10.1073/pnas.2301879120.
[16] MARTÍN-TRILLO M, GRANDÍO E G, SERRA F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching [J]. The Plant Journal, 2011, 67(4): 701−714.
[17] GUO Yongfeng, GAN Susheng. AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis [J]. Plant Physiology, 2011, 156(3): 1612−1619.
[18] ISHIZAKI T, UEDA Y, TAKAI T, et al. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency[J/OL]. Plant Science, 2023, 330: 111627[2025-06-05]. DOI: 10.1016/j.plantsci.2023.111627.
[19] WEI Hongbin, LUO Mengting, DENG Jiao, et al. SPL16 and SPL23 mediate photoperiodic control of seasonal growth in Populus trees [J]. New Phytologist, 2024, 241(4): 1646−1661.
[20] MAO Chanjuan, HE Jianmei, LIU Lina, et al. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development [J]. Plant Biotechnology Journal, 2020, 18(2): 429−442.
[21] HU Jie, HU Xiaotong, YANG Yang, et al. Strigolactone signaling regulates cambial activity through repression of WOX4 by transcription factor BES1 [J]. Plant Physiology, 2022, 188(1): 255−267.
[22] YAO Huanyu, YANG Tianyin, QIAN Jie, et al. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in Petunia[J/OL]. Genes, 2022, 13(5): 855[2025-06-05]. DOI: 10.3390/genes13050855.
[23] JOFUKU K D, den BOER B G, MONTAGU M V, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2 [J]. The Plant Cell, 1994, 6(9): 1211−1225.
[24] ZHANG Jing, LIAO Jiayao, LING Qiqi, et al. Genome-wide identification and expression profiling analysis of maize AP2/ERF superfamily genes reveal essential roles in abiotic stress tolerance[J/OL]. BMC Genomics, 2022, 23(1): 125[2025-06-05]. DOI: 10.1186/s12864-022-08345-7.
[25] MA Shiwei, LIN Qiuxiang, WU Ti, et al. EjCBF3 conferred cold-resistance through the enhancement of antioxidase activity in loquat (Eriobotrya japonica Lindl. )[J/OL]. Scientia Horticulturae, 2024, 337: 113556[2025-06-05]. DOI: 10.1016/j.scienta.2024.113556.
[26] CHENG Cheng, AN Likun, LI Fangzhe, et al. Wide-range portrayal of AP2/ERF transcription factor family in maize (Zea mays L. ) development and stress responses[J/OL]. Genes, 2023, 14(1): 194[2025-06-05]. DOI: 10.3390/genes14010194.
[27] YU Yang, YU Ming, ZHANG Shuangxing, et al. Transcriptomic identification of wheat AP2/ERF transcription factors and functional characterization of TaERF-6-3A in response to drought and salinity stresses[J/OL]. International Journal of Molecular Sciences, 2022, 23(6): 3272[2025-06-05]. DOI: 10.3390/ijms23063272.
[28] 黄奕孜, 钱旺, 邱姗, 等. 光皮桦AP2/ERF基因家族鉴定与表达分析[J]. 浙江农林大学学报, 2022, 39(6): 1183−1193.

HUANG Yizi, QIAN Wang, QIU Shan, et al. Identification and expression analysis of AP2/ERF gene family in Betula luminifera [J]. Journal of Zhejiang A&F University, 2022, 39(6): 1183−1193.
[29] ZHOU Jinggeng, MU Qiao, WANG Xiaoyang, et al. Multilayered synergistic regulation of phytoalexin biosynthesis by ethylene, jasmonate, and MAPK signaling pathways in Arabidopsis [J]. The Plant Cell, 2022, 34(8): 3066−3087.
[30] YU Li, YAO Min, MAO Lianlian, et al. Rice DSP controls stigma, panicle and tiller primordium initiation [J]. Plant Biotechnology Journal, 2023, 21(11): 2358−2373.
[31] QI Weiwei, SUN Fan, WANG Qianjie, et al. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene [J]. Plant Physiology, 2011, 157(1): 216−228.
[32] RIGAL A, YORDANOV Y S, PERRONE I, et al. The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar [J]. Plant Physiology, 2012, 160(4): 1996−2006.
[33] 王梦迪, 梁佳惠, 潘文强, 等. 乙烯响应因子LlERF12调控卷丹珠芽发生机制的初步解析[J]. 中国农业大学学报, 2025, 30(2): 80−93.

WANG Mengdi, LIANG Jiahui, PAN Wenqiang, et al. Preliminary analysis of the mechanism of ethylene response factor LlERF12 regulating bulbil formation in Lilium lancifolium [J]. Journal of China Agricultural University, 2025, 30(2): 80−93.
[34] 卢勇杰, 夏海乾, 李永铃, 等. 烟草AP2/ERF转录因子NtESR2的克隆及功能分析[J]. 生物技术通报, 2025(4): 266−277.

LU Yongjie, XIA Haiqian, LI Yongling, et al. Cloning and expression analysis of AP2/ERF transcription factor NtESR2 in Nicotiana tabacum [J]. Biotechnology Bulletin, 2025(4): 266−277.
[35] MEHRNIA M, BALAZADEH S, ZANOR M I, et al. EBE, an AP2/ERF transcription factor highly expressed in proliferating cells, affects shoot architecture in Arabidopsis[J]. Plant Physiology, 2013, 162(2): 842−857.
[36] KULUEV B R, KNIAZEV A V, IL’IASOVA A A, et al. Ectopic expression of the PnANTL1 and PnANTL2 black poplar genes in transgenic tobacco plants [J]. Genetika, 2012, 48(10): 1162−1170.
[37] LYU Jinyang, GUO Yuan, DU Chunlei, et al. BnERF114. A1, a rapeseed gene encoding APETALA2/ETHYLENE RESPONSE FACTOR regulates plant architecture through auxin accumulation in the apex in Arabidopsis[J/OL]. International Journal of Molecular Sciences, 2022, 23(4): 2210[2025-06-05]. DOI: 10.3390/ijms23042210.
[38] LAKEHAL A, DOB A, RAHNESHAN Z, et al. ETHYLENE RESPONSE FACTOR 115 integrates jasmonate and cytokinin signaling machineries to repress adventitious rooting in Arabidopsis [J]. New Phytologist, 2020, 228(5): 1611−1626.
[39] YE Binbin, SHANG Guandong, PAN Yu, et al. AP2/ERF transcription factors integrate age and wound signals for root regeneration [J]. The Plant Cell, 2020, 32(1): 226−241.
[40] DU Dongliang, HAO Ruijie, CHENG Tangren, et al. Genome-wide analysis of the AP2/ERF gene family in Prunus mume [J]. Plant Molecular Biology Reporter, 2013, 31(3): 741−750.
[41] ZHANG Qixiang, CHEN Wenbin, SUN Lidan, et al. The genome of Prunus mume[J/OL]. Nature Communications, 2012, 3: 1318[2025-06-05]. DOI: 10.1038/ncomms2290.
[42] BANNO H, IKEDA Y, NIU Q W, et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration [J]. The Plant Cell, 2001, 13(12): 2609−2618.
[43] HATTORI Y, NAGAI K, FURUKAWA S, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water [J]. Nature, 2009, 460(7258): 1026−1030.
[44] NIE Jing, WEN Chao, XI Lin, et al. The AP2/ERF transcription factor CmERF053 of Chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance [J]. Plant Cell Reports, 2018, 37(7): 1049−1060.
[45] WANG Yi, STRAUSS S, LIU Shanda, et al. The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity [J]. Current Biology, 2022, 32(17): 3773−3784.
[46] WANG Kaitong, ZHANG Huanhuan, WEI Han, et al. Roles of TCP transcription factors in plant growth and development[J/OL]. Physiologia Plantarum, 2025, 177(4): e70357[2025-06-05]. DOI: 10.1111/ppl.70357.