[1] 孔德雷, 姜培坤. “双碳”背景下种植业减排增汇的途径与政策建议[J]. 浙江农林大学学报, 2023, 40(6): 1357−1365.

KONG Delei, JIANG Peikun. Approaches and policy recommendations for reducing emissions and increasing carbon sinks in crop industry under the background of carbon peak and carbon neutrality [J]. Journal of Zhejiang A&F University, 2023, 40(6): 1357−1365.
[2] IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Groupto the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge: Cambridge University Press, 2022: 215−294.
[3] 王兴来, 苗淑杰, 乔云发. 基于江苏省本地化参数评价稻麦周年轮作系统碳足迹[J]. 生态环境学报, 2023, 32(9): 1682−1691.

WANG Xinglai, MIAO Shujie, QIAO Yunfa. Evaluating the carbon footprint of the rice-wheat rotation system based on localized parameters in Jiangsu Province [J]. Ecology and Environmental Sciences, 2023, 32(9): 1682−1691.
[4] ZHANG Xiaodan, LIAO Kaicheng, ZHOU Xianghong. Analysis of regional differences and dynamic mechanisms of agricultural carbon emission efficiency in China’s seven agricultural regions [J]. Environmental Science and Pollution Research, 2022, 29(25): 38258−38284.
[5] PAUSTIAN K, COLE C V, SAUERBECK D, et al. CO2 mitigation by agriculture: an overview [J]. Climatic Change, 1998, 40(1): 135−162.
[6] GHOSH S, MAJUMDAR D, JAIN M C. Methane and nitrous oxide emissions from an irrigated rice of north India [J]. Chemosphere, 2003, 51(3): 181−195.
[7] VOLPI I, RAGAGLINI G, NASSI O DI NASSO N, et al. Soil N2O emissions in Mediterranean arable crops as affected by reduced tillage and N rate [J]. Nutrient Cycling in Agroecosystems, 2020, 116(1): 117−133.
[8] WAHA K, DIETRICH J P, PORTMANN F T, et al. Multiple cropping systems of the world and the potential for increasing cropping intensity[J/OL]. Global Environmental Change, 2020, 64: 102131[2024-12-20]. DOI: 10.1016/j.gloenvcha.2020.102131.
[9] LI Yue, CHEN Ji, DRURY C F, et al. The role of conservation agriculture practices in mitigating N2O emissions: a meta-analysis[J/OL]. Agronomy for Sustainable Development, 2023, 43(5): 63[2024-12-20]. DOI: 10.1007/s13593-023-00911-x.
[10] YANG Xiaolin, XIONG Jinran, DU Taisheng, et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health[J/OL]. Nature Communications, 2024, 15: 198[2024-12-20]. DOI: 10.1038/s41467-023-44464-9.
[11] CHA-UN N, CHIDTHAISONG A, YAGI K, et al. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management[J]. Agriculture, Ecosystems & Environment, 2017, 237: 109−120.
[12] YANG Yuhao, TI Jinsong, ZOU Jun, et al. Optimizing crop rotation increases soil carbon and reduces GHG emissions without sacrificing yields[J/OL]. Agriculture, Ecosystems & Environment, 2023, 342: 108220[2024-12-20]. DOI: 10.1016/j.agee.2022.108220.
[13] 邓姣, 李心雨, 朱杰, 等. 秸秆还田和水旱轮作模式对稻季土壤温室气体排放的影响[J]. 植物营养与肥料学报, 2024, 30(2): 268−278.

DENG Jiao, LI Xinyu, ZHU Jie, et al. Greenhouse gas emissions of rice season soils under different paddy-upland rotation systems [J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(2): 268−278.
[14] 元生朝. 合理的复种轮作与湖北省稻田耕作制度改革[J]. 作物学报, 1981, 7(3): 211−216.

YUAN Shengchao. The suiable crop rotation and the improvement of the cropping system on rice field in Hubei Province [J]. Acta Agronomica Sinica, 1981, 7(3): 211−216.
[15] 李成伟. 稻作模式对稻田温室气体排放及土壤有机碳的影响[D]. 荆州: 长江大学, 2022.

LI Chengwei. Effects of Rice Cropping Patterns on Greenhouse Gas Emissions and Soil Organic Carbon in Paddy Fields[D]. Jingzhou: Yangtze University, 2022.
[16] 帅艳菊. 湖北省主要稻作模式温室气体排放模拟研究[D]. 武汉: 华中农业大学, 2021.

SHUAI Yanju. Simulation Research on Greenhouse Gas Emission of Major Rice-based Cropping Systems in Hubei Province[D]. Wuhan: Huazhong Agricultural University, 2021.
[17] 王书伟, 吴正贵, 孙永泉, 等. 太湖地区典型轮作与休耕方式对稻田水稻季N2O和CH4排放量的影响[J]. 生态环境学报, 2021, 30(1): 63−71.

WANG Shuwei, WU Zhenggui, SUN Yongquan, et al. Effects of typical crop rotation systems and land fallow on paddy soil N2O and CH4 emissions in Taihu Lake Region of China [J]. Ecology and Environmental Sciences, 2021, 30(1): 63−71.
[18] BRONSON K F, NEUE H U, ABAO Jr E B, et al. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil: I. residue, nitrogen, and water management [J]. Soil Science Society of America Journal, 1997, 61(3): 981−987.
[19] 吴梦琴, 李成芳, 盛锋, 等. 基于DNDC模型评估湖北省不同稻作系统不同管理措施温室气体排放的周年变化[J]. 中国生态农业学报(中英文), 2021, 29(9): 1480−1492.

WU Mengqin, LI Chengfang, SHENG Feng, et al. Assessment of the annual greenhouse gases emissions under different rice-based cropping systems in Hubei Province based on the denitrification-decomposition (DNDC) model [J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1480−1492.
[20] 邹凤亮, 曹凑贵, 马建勇, 等. 基于DNDC模型模拟江汉平原稻田不同种植模式条件下温室气体排放[J]. 中国生态农业学报, 2018, 26(9): 1291−1301.

ZOU Fengliang, CAO Cougui, MA Jianyong, et al. Greenhouse gases emission under different cropping systems in the Jianghan Plain based on DNDC model [J]. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1291−1301.
[21] 孙园园, 孙永健, 王锐婷, 等. 基于DNDC模型的川中丘陵区不同轮作制度下稻田CO2排放研究[J]. 中国农业气象, 2011, 32(4): 530−537.

SUN Yuanyuan, SUN Yongjian, WANG Ruiting, et al. Simulation of CO2 emission from rice fields under different cropping systems in central Sichuan hilly area with DCDC model [J]. Chinese Journal of Agrometeorology, 2011, 32(4): 530−537.
[22] FINN D, KOPITTKE P M, DENNIS P G, et al. Microbial energy and matter transformation in agricultural soils [J]. Soil Biology and Biochemistry, 2017, 111: 176−192.
[23] 李萍萍, 韩建刚, 陈欣, 等. 我国设施生态农业主要模式及配套技术的研究与实践[J]. 浙江大学学报(农业与生命科学版), 2024, 50(2): 149−160.

LI Pingping, HAN Jian’gang, CHEN Xin, et al. Research and practice on the main models and supporting technologies of ecological greenhouse agriculture in China [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 149−160.
[24] 杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术[J]. 中国农业科学, 2008, 41(6): 1611−1621.

YANG Jianchang, DU Yong, LIU Hui. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze River [J]. Scientia Agricultura Sinica, 2008, 41(6): 1611−1621.
[25] 许国春. 不同轮作系统和稻作模式对稻田温室气体排放及氮素平衡的影响[D]. 南京: 南京农业大学, 2017.

XU Guochun. Effects of Different Rotation Systems and Cultivation Modes on Greenhouse Gas Emissions and Nitrogen Balance in Rice Field[D]. Nanjing: Nanjing Agricultural University, 2017.
[26] WEI Huanhuan, LI Yue, ZHU Kun, et al. The divergent role of straw return in soil O2 dynamics elucidates its confounding effect on soil N2O emission[J/OL]. Soil Biology and Biochemistry, 2024, 199: 109620[2024-12-20]. DOI: 10.1016/j.soilbio.2024.109620.
[27] 柳敏, 宇万太, 姜子绍, 等. 土壤活性有机碳[J]. 生态学杂志, 2006, 25(11): 1412−1417.

LIU Min, YU Wantai, JIANG Zishao, et al. A research review on soil active organic carbon [J]. Chinese Journal of Ecology, 2006, 25(11): 1412−1417.
[28] CHAN A S K, PARKIN T B. Effect of land use on methane flux from soil [J]. Journal of Environmental Quality, 2001, 30(3): 786−797.
[29] 王从. 稻麦轮作生态系统温室气体排放对大气CO2浓度和温度升高的响应研究[D]. 南京: 南京农业大学, 2017.

WANG Cong. Effects of Elevated CO2 and Temperature on Greenhouse Gases (CH4 and N2O) Emission from Rice-Wheat Rotation Systems[D]. Nanjing: Nanjing Agricultural University, 2017.
[30] 陈秋会, 王磊, 席运官, 等. 太湖地区有机与常规种植方式下稻麦轮作农田温室气体短期排放特征[J]. 农业环境科学学报, 2019, 38(11): 2642−2649.

CHEN Qiuhui, WANG Lei, XI Yunguan, et al. Short-term greenhouse gas emissions from organic and conventional rice-wheat rotation cropping systems in Taihu Lake region, China [J]. Journal of Agro-Environment Science, 2019, 38(11): 2642−2649.
[31] 李海防, 夏汉平, 熊燕梅, 等. 土壤温室气体产生与排放影响因素研究进展[J]. 生态环境, 2007, 16(6): 1781−1788.

LI Haifang, XIA Hanping, XIONG Yanmei, et al. Mechanism of greenhouse gases fluxes from soil and its controlling factors: a review [J]. Ecology and Environment, 2007, 16(6): 1781−1788.
[32] 徐华, 蔡祖聪, 李小平, 等. 冬作季节土地管理对水稻土CH4排放季节变化的影响[J]. 应用生态学报, 2000, 11(2): 215−218.

XU Hua, CAI Zucong, LI Xiaoping, et al. Effect of land management in winter crop season on seasonal variations of CH4 emissions from rice paddy soils [J]. Chinese Journal of Applied Ecology, 2000, 11(2): 215−218.
[33] 石吕, 石晓旭, 韩笑, 等. “元麦-稻” 轮作体系短期温室气体排放及经济效益评价[J/OL]. 农业资源与环境学报, 2024-06-17[2024-12-20]. https://link.cnki.net/doi/10.13254/j. jare.2024.0123.

SHI Lü, SHI Xiaoxu, HAN Xiao, et al. Short-term greenhouse gas emission and economic benefit evaluation of ‘naked barley-rice’ rotation system[J/OL]. Journal of Agricultural Resources and Environment, 2024-06-17[2024-12-20]. https://link.cnki.net/doi/10.13254/j.jare.2024.0123.
[34] 吴震. 生物质炭减缓稻麦轮作系统N2O和CH4排放——三年原位观测及机制研究[D]. 南京: 南京农业大学, 2020.

WU Zhen. Three-year in-situ Observations and Mechanisms of Biochar Amendment Mitigating N2O and CH4 Emissions in Rice-wheat Rotation System[D]. Nanjing: Nanjing Agricultural University, 2020.
[35] GUO Shufang, PAN Junting, ZHAI Limei, et al. The reactive nitrogen loss and GHG emissions from a maize system after a long-term livestock manure incorporation in the North China Plain[J/OL]. Science of the Total Environment, 2020, 720: 137558[2024-12-20]. DOI: 10.1016/j.scitotenv.2020.137558.
[36] 孔德雷. 有机肥部分替代化肥对稻麦轮作系统甲烷和氮氧化物排放的影响研究[D]. 南京: 南京农业大学, 2021.

KONG Delei. Methane and Nitrogenous Gas Emissions from Rice-wheat Rotations under Substitution of Chemical Fertilizer with Manure[D]. Nanjing: Nanjing Agricultural University, 2021.
[37] JIANG Mengdie, YANG Niping, ZHAO Jinsong, et al. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions[J/OL]. Geoderma, 2021, 401: 115342[2024-12-20]. DOI: 10.1016/j.geoderma.2021.115342.
[38] 龚振平, 颜双双, 闫超, 等. 寒地水稻秸秆还田和温度对稻田甲烷排放的影响[J]. 东北农业大学学报, 2015, 46(12): 8−15.

GONG Zhenping, YAN Shuangshuang, YAN Chao, et al. Effect of rice straw retention and temperature on methane emission in rice field in cold region [J]. Journal of Northeast Agricultural University, 2015, 46(12): 8−15.
[39] 吴讷, 侯海军, 汤亚芳, 等. 稻田水分管理和秸秆还田对甲烷排放的微生物影响[J]. 农业工程学报, 2016, 32(增刊2): 69−76.

WU Ne, HOU Haijun, TANG Yafang, et al. Methane-related microbe influenced by water management and rile straw returning in paddy soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(suppl 2): 69−76.
[40] CHEN Huaihai, LI Xuechao, HU Feng, et al. Soil nitrous oxide emissions following crop residue addition: a meta-analysis [J]. Global Change Biology, 2013, 19(10): 2956−2964.
[41] 邹国元, 张福锁, 陈新平, 等. 秸秆还田对旱地土壤反硝化的影响[J]. 中国农业科技导报, 2001, 3(6): 47−50.

ZOU Guoyuan, ZHANG Fusuo, CHEN Xinping, et al. Effect of straw addition on denitrification in upland soil [J]. Review of China Agricultural Science and Technology, 2001, 3(6): 47−50.
[42] 马朋辉, 张会敏, 景明, 等. 秸秆还田对麦田土壤温室气体排放影响的Meta分析[J]. 农业机械学报, 2025, 56(3): 425−436.

MA Penghui, ZHANG Huimin, JING Ming, et al. Meta-analysis on effects of straw returning on greenhouse gas emissions from wheat fields [J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(3): 425−436.
[43] LIU Chunyan, WANG Kai, MENG Shixie, et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 226−233.
[44] ZOU Jianwen, HUANG Yao, JIANG Jingyan, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application[J/OL]. Global Biogeochemical Cycles, 2005, 19(2): GB2021[2024-12-20]. DOI: 10.1029/2004GB002401.
[45] LIU Chang, LU Meng, CUI Jun, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis [J]. Global Change Biology, 2014, 20(5): 1366−1381.
[46] 杨正宇, 李宗明, 李言言, 等. 连续11年不同秸秆还田量下稻田甲烷增排效应变化研究[J/OL]. 土壤学报, 2024-07-22[2024-12-20]. https://link.cnki.net/urlid/32.1119.p.20240718.1641.004.

YANG Zhengyu, LI Zongming, LI Yanyan, et al. Variation of the increased CH4 emissions in paddy fields with straw incorporation across 11 consecutive years[J/OL]. Acta Pedologica Sinica, 2024-07-22[2024-12-20]. https://link.cnki.net/urlid/32.1119.p.20240718.1641.004.
[47] 陈友德, 赵杨, 高杜娟, 等. 稻油不同轮作模式对农田甲烷和氧化亚氮排放的影响[J]. 环境科学, 2020, 41(10): 4701−4710.

CHEN Youde, ZHAO Yang, GAO Dujuan, et al. Effects of different rotation patterns of oil-rice on methane and nitrous oxide emissions in rice fields [J]. Environmental Science, 2020, 41(10): 4701−4710.
[48] 马静, 徐华, 蔡祖聪, 等. 墒沟埋草对稻田CH4和N2O排放的影响[J]. 生态与农村环境学报, 2008, 24(4): 27−31.

MA Jing, XU Hua, CAI Zucong, et al. Influence of wheat straw buried in ditches on CH4 and N2O emissions from rice fields [J]. Journal of Ecology and Rural Environment, 2008, 24(4): 27−31.
[49] 向静. 稻油轮作模式土壤培肥、增产增效和温室气体排放的效应研究[D]. 雅安: 四川农业大学, 2020.

XIANG Jing. Study on Effects of Rice Tanker Mode on Soil Fertilization, Yield Increase and Efficiency and Greenhouse Gas Emission[D]. Ya’an: Sichuan Agricultural University, 2020.
[50] 李成芳, 寇志奎, 张枝盛, 等. 秸秆还田对免耕稻田温室气体排放及土壤有机碳固定的影响[J]. 农业环境科学学报, 2011, 30(11): 2362−2367.

LI Chengfang, KOU Zhikui, ZHANG Zhisheng, et al. Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields [J]. Journal of Agro-Environment Science, 2011, 30(11): 2362−2367.
[51] 王明, 逄蕾, 马明生, 等. 不同覆盖方式对马铃薯-小麦轮作土壤养分表观平衡的影响[J]. 植物营养与肥料学报, 2025, 31(2): 292−304.

WANG Ming, PANG Lei, MA Mingsheng, et al. Effects of mulching methods on soil nutrient apparent balance under wheat-potato rotation system in the rain-fed area [J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(2): 292−304.
[52] QIU Tianyi, SHI Yu, PEÑUELAS J, et al. Optimizing cover crop practices as a sustainable solution for global agroecosystem services[J/OL]. Nature Communications, 2024, 15: 10617[2024-12-20]. DOI: 10.1038/s41467-024-54536-z.
[53] 范志伟. 地膜覆盖稻-油轮作农田中温室气体的排放特征及影响因素研究[D]. 重庆: 西南大学, 2017.

FAN Zhiwei. Characteristics of Greenhouse Gases Emission and its Influencing Factors from a Rice-rapeseed Rotation Cropland under Plastic Film Mulching[D]. Chongqing: Southwest University, 2017.
[54] 尚杰, 杨果, 于法稳. 中国农业温室气体排放量测算及影响因素研究[J]. 中国生态农业学报, 2015, 23(3): 354−364.

SHANG Jie, YANG Guo, YU Fawen. Agricultural greenhouse gases emissions and influencing factors in China [J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 354−364.
[55] 陈坚, 吴柳格, 张鑫, 等. 黄淮海地区不同种植模式作物产量和温室气体排放特征及其差异[J]. 中国生态农业学报(中英文), 2025, 33(3): 508−519.

CHEN Jian, WU Liuge, ZHANG Xin, et al. Characteristics and differences of crop yield and greenhouse gas emissions under different cropping systems in the Huang-Huai-Hai Region [J]. Chinese Journal of Eco-Agriculture, 2025, 33(3): 508−519.
[56] WILSON H M, AL-KAISI M M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa [J]. Applied Soil Ecology, 2008, 39(3): 264−270.
[57] USSIRI D A N, LAL R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio [J]. Soil and Tillage Research, 2009, 104(1): 39−47.
[58] 李新华, 董红云, 朱振林, 等. 秸秆还田方式对黄淮海区域小麦-玉米轮作制农田土壤周年温室气体排放的影响[J]. 土壤与作物, 2019, 8(3): 280−287.

LI Xinhua, DONG Hongyun, ZHU Zhenlin, et al. Influences of straw returning on greenhouse gas emissions in a wheat-corn rotation farmland of Huang-Huai-Hai region [J]. Soils and Crops, 2019, 8(3): 280−287.
[59] 张黛静, 胡晓, 马建辉, 等. 耕作和培肥对豫中区小麦-玉米轮作系统土壤氮平衡和温室气体排放的影响[J]. 应用生态学报, 2021, 32(5): 1753−1760.

ZHANG Daijing, HU Xiao, MA Jianhui, et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China [J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1753−1760.
[60] 闫翠萍, 张玉铭, 胡春胜, 等. 不同耕作措施下小麦-玉米轮作农田温室气体交换及其综合增温潜势[J]. 中国生态农业学报, 2016, 24(6): 704−715.

YAN Cuiping, ZHANG Yuming, HU Chunsheng, et al. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns [J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 704−715.
[61] 程伯豪, 白金泽, 刘镇远, 等. 秸秆还田对关中地区麦玉轮作田N2O排放的短期效应[J]. 植物营养与肥料学报, 2023, 29(6): 1002−1012.

CHENG Bohao, BAI Jinze, LIU Zhenyuan, et al. Short-term effects of straw return on N2O emissions from wheat and maize rotation fields in Guanzhong area [J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(6): 1002−1012.
[62] 王文岩, 董文旭, 陈素英, 等. 连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J]. 农业工程学报, 2016, 32(增刊2): 135−141.

WANG Wenyan, DONG Wenxu, CHEN Suying, et al. Effect of continuously appling controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(suppl 2): 135−141.
[63] JU Xiaotang, ZHANG Chong. Nitrogen cycling and environmental impacts in upland agricultural soils in north China: a review [J]. Journal of Integrative Agriculture, 2017, 16(12): 2848−2862.
[64] 曹兵, 丁紫娟, 侯俊, 等. 控释掺混肥结合增密对水稻氮肥利用效率和氨挥发的影响[J]. 农业工程学报, 2022, 38(13): 56−63.

CAO Bing, DING Zijuan, HOU Jun, et al. Effects of the blends of controlled-release and conventional nitrogen fertilizers combined with dense planting on nitrogen use efficiency and ammonia volatilization in a paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 56−63.
[65] 曹兵, 高玮, 李洪杰, 等. 控释掺混肥对麦玉轮作体系农田温室气体排放和硝态氮残留的影响[J]. 农业工程学报, 2024, 40(7): 240−250.

CAO Bing, GAO Wei, LI Hongjie, et al. Effects of controlled-release blended fertilizers on greenhouse gas emissions and nitrate residue in wheat-maize rotation system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(7): 240−250.
[66] 高玮, 王学霞, 谢建治, 等. 控释掺混肥对麦玉轮作体系作物产量和温室气体排放的影响[J]. 环境科学, 2024, 45(5): 2891−2904.

GAO Wei, WANG Xuexia, XIE Jianzhi, et al. Effects of controlled-release blended fertilizer on crop yield and greenhouse gas emissions in wheat-maize rotation system [J]. Environmental Science, 2024, 45(5): 2891−2904.
[67] 李洋, 石柯, 朱长伟, 等. 不同轮作模式对黄淮平原潮土区土壤养分及作物产量的影响[J]. 水土保持学报, 2022, 36(2): 312−321.

LI Yang, SHI Ke, ZHU Changwei, et al. Effect of different crop rotations on soil nutrients and crop yield in fluvo-aquic soil in Huang Huai Plain [J]. Journal of Soil and Water Conservation, 2022, 36(2): 312−321.
[68] 谢军飞. 北京麦豆轮作生态系统N2O排放、CH4吸收观测与模拟研究[D]. 北京: 中国农业科学院, 2003.

XIE Junfei. The Simulation and Observation Study of N2O Emission, CH4 Absorption in Wheat-soybean Rotation Ecosystem in Beijing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2003.
[69] 梁尧, 韩晓增, 乔云发, 等. 小麦-玉米-大豆轮作下黑土农田土壤呼吸与碳平衡[J]. 中国生态农业学报, 2012, 20(4): 395−401.

LIANG Yao, HAN Xiaozeng, QIAO Yunfa, et al. Soil respiration and carbon budget in black soils of wheatmaize-soybean rotation system [J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 395−401.
[70] 孔德杰. 秸秆还田和施肥对麦豆轮作土壤碳氮及微生物群落的影响[D]. 杨凌: 西北农林科技大学, 2020.

KONG Dejie. Effect on Nitrogen and Carbon Content and Microbial Community Structure of Wheatsoybean Rotation Soil under Straw Return and Fertilizer Application Treatments[D]. Yangling: Northwest A&F University, 2020.
[71] TAN Yuechen, WU Di, BOL R, et al. Conservation farming practices in winter wheat-summer maize cropping reduce GHG emissions and maintain high yields[J]. Agriculture, Ecosystems & Environment, 2019, 272: 266−275.
[72] QIAO Yunfa, MIAO Shujie, HAN Xiaozeng, et al. The effect of fertilizer practices on N balance and global warming potential of maize-soybean-wheat rotations in Northeastern China [J]. Field Crops Research, 2014, 161: 98−106.
[73] ZHANG Xin, ZHANG Jun, ZHENG Chengyan, et al. Significant residual effects of wheat fertilization on greenhouse gas emissions in succeeding soybean growing season [J]. Soil and Tillage Research, 2017, 169: 7−15.
[74] GAO Bing, JU Xiaotang, SU Fang, et al. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study [J]. Science of the Total Environment, 2014, 472: 112−124.
[75] 刘镇远. 长期秸秆还田配施氮肥对麦豆轮作农田土壤理化性质、N2O排放和产量的影响[D]. 杨凌: 西北农林科技大学, 2022.

LIU Zhenyuan. Long-term Straw Retention and Nitrogen Fertilization Effects on Soil Physiochemical Properties, N2O Emission and Yield of Wheat-soybean Rotation System[D]. Yangling: Northwest A&F University, 2022.
[76] 李昌珍. 基于轮作过程的农田碳源/汇效应研究——以陕西关中灌区为例[D]. 杨凌: 西北农林科技大学, 2013.

LI Changzhen. The Research of Effects of Carbon Source/sink based on Rotation Fields in Guanzhong Irrigation Region [D]. Yangling: Northwest A&F University, 2013.
[77] 李昌珍, 张婷婷, 冯永忠, 等. 不同轮作方式对免耕农田土壤CO2排放的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(4): 143−149.

LI Changzhen, ZHANG Tingting, FENG Yongzhong, et al. Effects of different rotation modes on soil CO2 emission fluxes from no-till farmland [J]. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(4): 143−149.
[78] 蒋洪丽, 雷琪, 张彪, 等. 覆膜和有机无机配施对夏玉米农田温室气体排放及水氮利用的影响[J]. 环境科学, 2023, 44(6): 3426−3438.

JIANG Hongli, LEI Qi, ZHANG Biao, et al. Effects of mulching and application of organic and chemical fertilizer on greenhouse gas emission and water and nitrogen use in summer maize farmland [J]. Environmental Science, 2023, 44(6): 3426−3438.
[79] 马小婷, 隋玉柱, 朱振林, 等. 秸秆还田对农田土壤碳库和温室气体排放的影响研究进展[J]. 江苏农业科学, 2017, 45(6): 14−20.

MA Xiaoting, SUI Yuzhu, ZHU Zhenlin, et al. Research progress on the influence of straw returning to field on soil carbon pool and greenhouse gas emission in farmland [J]. Jiangsu Agricultural Sciences, 2017, 45(6): 14−20.
[80] WANG Jinyang, CIAIS P, SMITH P, et al. The role of rice cultivation in changes in atmospheric methane concentration and the Global Methane Pledge [J]. Global Change Biology, 2023, 29(10): 2776−2789.
[81] ZHANG Bin, PANG Chengqing, QIN Jiangtao, et al. Rice straw incorporation in winter with fertilizer-N application improves soil fertility and reduces global warming potential from a double rice paddy field [J]. Biology and Fertility of Soils, 2013, 49(8): 1039−1052.
[82] 胡明明, 李志欣, 丁峰, 等. 不同水旱轮作模式下秸秆还田与精量减氮对水稻产量、氮素吸收利用及土壤氮含量的影响[J]. 植物营养与肥料学报, 2024, 30(8): 1500−1514.

HU Mingming, LI Zhixin, DING Feng, et al. Effects of straw returning and precise N reduction on rice yield, N uptake and utilization and soil N content under different paddy-upland rotation patterns [J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1500−1514.
[83] 屈田华, 李永夫, 张少博, 等. 生物质炭输入影响土壤氮素转化与氧化亚氮排放的研究进展[J]. 浙江农林大学学报, 2021, 38(5): 926−936.

QU Tianhua, LI Yongfu, ZHANG Shaobo, et al. Effects of biochar application on soil nitrogen transformation and N2O emissions: a review [J]. Journal of Zhejiang A&F University, 2021, 38(5): 926−936.
[84] CHAKRABORTY D, LADHA J K, RANA D S, et al. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production[J/OL]. Scientific Reports, 2017, 7: 9342[2024-12-20]. DOI: 10.1038/s41598-017-09742-9.
[85] JIANG Yu, CARRIJO D, HUANG Shan, et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis [J]. Field Crops Research, 2019, 234: 47−54.
[86] SOUZA R, YIN Jun, CALABRESE S. Optimal drainage timing for mitigating methane emissions from rice paddy fields[J/OL]. Geoderma, 2021, 394: 114986[2024-12-20]. DOI: 10.1016/j.geoderma.2021.114986.
[87] 蔡连凤, 王学霞, 王甲辰, 等. 不同施氮措施对麦玉轮作系统N2O排放的影响[J]. 环境科学, 2024, 45(10): 6148−6156.

CAI Lianfeng, WANG Xuexia, WANG Jiachen, et al. Effects of different nitrogen application measures on N2O emissions in wheat-maize rotation system [J]. Environmental Science, 2024, 45(10): 6148−6156.
[88] 李波, 赵财, 殷民兴, 等. 轮作及减氮对绿洲灌区农田温室气体排放及土壤酶活性的影响[J]. 干旱地区农业研究, 2024, 42(4): 210−220.

LI Bo, ZHAO Cai, YIN Minxing, et al. Effects of rotation and nitrogen reduction on greenhouse gas emissions and soil enzyme activities in oasis irrigation areas [J]. Agricultural Research in the Arid Areas, 2024, 42(4): 210−220.
[89] 张涛, 何燕. 绿肥还田对贵州黄壤玉米产量及温室气体排放的影响[J]. 江苏农业科学, 2022, 50(9): 70−76.

ZHANG Tao, HE Yan. Impacts of green manure returning to field on maize yield and greenhouse gas emission in yellow soil of Guizhou Province [J]. Jiangsu Agricultural Sciences, 2022, 50(9): 70−76.
[90] KANG Jiahui, WANG Jingxia, HEAL M R, et al. Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production [J]. Nature Food, 2023, 4(9): 751−761.
[91] 胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 2023, 31(2): 163−176.

HU Yonghao, ZHANG Kunyang, HU Nanyan, et al. Review on measurement of agricultural carbon emission in China [J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 163−176.
[92] 张岳芳, 郑建初, 陈留根, 等. 水旱轮作稻田旱作季种植不同作物对CH4和N2O排放的影响[J]. 生态环境学报, 2012, 21(9): 1521−1526.

ZHANG Yuefang, ZHENG Jianchu, CHEN Liugen, et al. Effects of different upland crops cultivation on CH4 and N2O emissions during upland-growing season from paddy rice-upland crop rotation field [J]. Ecology and Environmental Sciences, 2012, 21(9): 1521−1526.
[93] 王赟, 徐昌旭, 周国朋, 等. 连续种植翻压紫云英减施化肥对江西早稻产量、品质及土壤肥力的影响[J]. 植物营养与肥料学报, 2021, 27(10): 1735−1745.

WANG Yun, XU Changxu, ZHOU Guopeng, et al. Effects of long-term incorporation of milk vetch combined with reduction of chemical fertilizer on yield, quality and soil fertility of early rice in Jiangxi [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1735−1745.
[94] 侯会静, 陈慧, 杨士红, 等. 水稻控制灌溉对稻麦轮作农田N2O排放的调控效应[J]. 农业工程学报, 2015, 31(12): 125−131.

HOU Huijing, CHEN Hui, YANG Shihong, et al. Effects of controlled irrigation of paddy fields on N2O emissions from rice-winter wheat rotation systems [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 125−131.
[95] 何昊, 李丹丹, 吴泽, 等. 长江中下游稻麦轮作农业源温室气体排放及减排研究[J]. 环境科学与管理, 2021, 46(12): 19−23.

HE Hao, LI Dandan, WU Ze, et al. Research on greenhouse gas emissions and emission reduction from agricultural sources of rice-wheat rotation in the middle and lower reaches of Yangtze River [J]. Environmental Science and Management, 2021, 46(12): 19−23.
[96] 杨那, 毛晓涵, 李彦, 等. 农田土壤有机碳及活性碳组分对秸秆和地膜覆盖响应的Meta分析[J]. 环境科学, 2025, 46(4): 2292−2300.

YANG Na, MAO Xiaohan, LI Yan, et al. Meta-analysis of soil organic carbon and its active fractions in response to straw and film mulching [J]. Environmental Science, 2025, 46(4): 2292−2300.
[97] 翟洋洋, 程云湘, 常生华, 等. 干旱地区农田生态系统土壤温室气体排放机制[J]. 中国农学通报, 2015, 31(9): 231−236.

ZHAI Yangyang, CHENG Yunxiang, CHANG Shenghua, et al. Mechanism of greenhouse gas emission from agro-ecosystem soil in arid regions [J]. Chinese Agricultural Science Bulletin, 2015, 31(9): 231−236.
[98] 李金秋, 邵晓辉, 缑广林, 等. 水肥管理对热带地区双季稻田CH4和N2O排放的影响[J]. 环境科学, 2021, 42(7): 3458−3471.

LI Jinqiu, SHAO Xiaohui, GOU Guanglin, et al. Effects of water and fertilization management on CH4 and N2O emissions in double-rice paddy fields in tropical regions [J]. Environmental Science, 2021, 42(7): 3458−3471.
[99] 白芳芳, 李平, 陆红飞, 等. 减氮对华北地区麦玉轮作农田土壤N2O排放调控机理[J]. 灌溉排水学报, 2024, 43(5): 95−104.

BAI Fangfang, LI Ping, LU Hongfei, et al. Regulating nitrogen fertilization to reduce N2O emission in wheat-maize rotation farmlands in North China [J]. Journal of Irrigation and Drainage, 2024, 43(5): 95−104.
[100] 唐继伟, 林治安, 李娟, 等. 潮土小麦-玉米轮作体系氮肥用量阈值及土壤硝态氮年际变化[J]. 植物营养与肥料学报, 2020, 26(12): 2246−2252.

TANG Jiwei, LIN Zhian, LI Juan, et al. Optimal nitrogen rate and the down movement of soil nitrate nitrogen in wheat-maize rotation system in fluvo-aquic soil [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2246−2252.
[101] 孙兰. 豆科参与的轮作模式对皖北平原农田温室气体排放和作物产量的影响[D]. 凤阳: 安徽科技学院, 2020.

SUN Lan. Effects of Soybean Related Rotation Patterns on Greenhouse Gas Emissions and Crop Production in North Anhui Plain[D]. Fengyang: Anhui Science and Technology University, 2020.
[102] QIN Wei, WANG Daozhong, GUO Xisheng, et al. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling[J/OL]. Scientific Reports, 2015, 5: 17514[2024-12-20]. DOI: 10.1038/srep17514.
[103] WANG Yanli, WU Pengnian, LI Yuming, et al. Optimized planting structures maintain system yield and economic benefits with less nitrogen footprint[J/OL]. Field Crops Research, 2024, 305: 109197[2024-12-20]. DOI: 10.1016/j.fcr.2023.109197.
[104] AMELUNG W, BOSSIO D, de VRIES W, et al. Towards a global-scale soil climate mitigation strategy[J/OL]. Nature Communications, 2020, 11: 5427[2024-12-20]. DOI: 10.1038/s41467-020-18887-7.
[105] 姚权, 唐旭, 肖谋良, 等. 缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响[J]. 浙江农林大学学报, 2025, 42(1): 175−184.

YAO Quan, TANG Xu, XIAO Mouliang, et al. Effects of slow release nitrogen fertilizer combined with organic fertilizer on crop growth and soil nutrient content in rice-wheat rotation system [J]. Journal of Zhejiang A&F University, 2025, 42(1): 175−184.
[106] 王玉英, 胡春胜, 董文旭, 等. 华北平原小麦-玉米轮作系统碳中和潜力及固碳措施[J]. 中国生态农业学报(中英文), 2022, 30(4): 651−657.

WANG Yuying, HU Chunsheng, DONG Wenxu, et al. Carbon neutralization potential and carbon sequestration efforts in a wheatmaize rotation system in the North China Plain [J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 651−657.