[1] NUNES L J R. The rising threat of atmospheric CO2: a review on the causes, impacts, and mitigation strategies[J/OL]. Environments, 2023, 10(4): 66[2025-01-01]. DOI: 10.3390/environments10040066.
[2] SOARES J C, OSÓRIO H, PINTADO M, et al. Effect of the interaction between elevated carbon dioxide and iron limitation on proteomic profiling of soybean[J/OL]. International Journal of Molecular Sciences, 2022, 23(21): 13632[2025-01-01]. DOI: 10.3390/ijms232113632.
[3] ZHU Chunwu, LANGLEY J A, ZISKA L H, et al. Accelerated sea-level rise is suppressing CO2 stimulation of tidal marsh productivity: a 33-year study[J/OL]. Science Advances, 2022, 8(20): eabn0054[2025-01-01]. DOI: 10.1126/sciadv.abn0054.
[4] YOON Y E, CHO H M, BAE D W, et al. Erythromycin treatment of Brassica campestris seedlings impacts the photosynthetic and protein synthesis pathways[J/OL]. Life, 2020, 10(12): 311[2025-01-01]. DOI: 10.3390/life10120311.
[5] 韩米雪, 郁红艳, 刘潘洋, 等. 大气二氧化碳摩尔分数升高对土壤有机碳稳定性的影响[J]. 浙江农林大学学报, 2021, 38(5): 963−972.

HAN Mixue, YU Hongyan, LIU Panyang, et al. Effects of the mole fraction of elevated atmospheric CO2 on soil organic carbon stability [J]. Journal of Zhejiang A&F University, 2021, 38(5): 963−972.
[6] 彭海兰, 姬拉拉, 黄兴敏, 等. CO2浓度升高与施氮对薏苡苗期营养元素吸收运输的影响[J]. 核农学报, 2022, 36(12): 2482−2489.

PENG Hailan, JI Lala, HUANG Xingmin, et al. Effects of elevated CO2 concentration and nitrogen application on nutrient absorption and transportation in Coix lacryma-jobi seedling stage [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2482−2489.
[7] 许爱云, 秦一彤, 张原红, 等. 短期氮添加下CO2浓度升高对蒙古冰草生长的影响[J]. 草地学报, 2025, 33(4): 1211−1217.

XU Aiyun, QIN Yitong, ZHANG Yuanhong, et al. Effects of elevated CO2 concentration on the growth of Agropyron mongolicum under short-term nitrogen addition scenario [J]. Acta Agrestia Sinica, 2025, 33(4): 1211−1217.
[8] CUI Erqian, XIA Jianyang, LUO Yiqi. Nitrogen use strategy drives interspecific differences in plant photosynthetic CO2 acclimation [J]. Global Change Biology, 2023, 29(13): 3667−3677.
[9] OFORI-AMANFO K K, KLEM K, VESELÁ B, et al. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies [J]. Tree Physiology, 2023, 43(6): 925−937.
[10] 王晓, 韦小丽, 吴高殷, 等. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173−181.

WANG Xiao, WEI Xiaoli, WU Gaoyin, et al. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration [J]. Scientia Silvae Sinicae, 2021, 57(4): 173−181.
[11] REICH P B, HOBBIE S E, LEE T D, et al. Synergistic effects of four climate change drivers on terrestrial carbon cycling [J]. Nature Geoscience, 2020, 13(12): 787−793.
[12] PASTORE M A, HOBBIE S E, REICH P B. Sensitivity of grassland carbon pools to plant diversity, elevated CO2, and soil nitrogen addition over 19 years[J/OL]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(17): e2016965118[2025-01-01]. DOI: 10.1073/pnas.2016965118.
[13] 马冲, 马亚平, 冯学瑞, 等. CO2浓度升高对宁夏枸杞不同器官中生物活性物质含量的影响[J]. 西北农业学报, 2024, 33(3): 521−531.

MA Chong, MA Yaping, FENG Xuerui, et al. Effect of increasing CO2 concentration on content of bioactive substances in different organs of Lycium barbarum L. [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2024, 33(3): 521−531.
[14] 赵建华, 李浩霞, 尹跃, 等. 4种枸杞果实发育过程中糖积累与蔗糖代谢酶的关系[J]. 浙江农林大学学报, 2016, 33(6): 1025−1032.

ZHAO Jianhua, LI Haoxia, YIN Yue, et al. Sugar accumulation and sucrose-metabolizing enzyme activities in four Lycium species during fruit development [J]. Journal of Zhejiang A&F University, 2016, 33(6): 1025−1032.
[15] 刘德帅, 袁苗, 冯美, 等. 不同采收期宁夏枸杞果实品质差异及抗氧化特性分析[J]. 植物生理学报, 2024, 60(5): 837−849.

LIU Deshuai, YUAN Miao, FENG Mei, et al. Study on the quality differences and antioxidant properties of Lycium barbarum fruits at different harvesting periods [J]. Plant Physiology Journal, 2024, 60(5): 837−849.
[16] VIDOVIĆ B B, MILINČIĆ D D, MARČETIĆ M D, et al. Health benefits and applications of goji berries in functional food products development: a review[J/OL]. Antioxidants, 2022, 11(2): 248[2025-01-01]. DOI: 10.3390/antiox11020248.
[17] ZHANG Yahong, QIN Jiaqi, WANG Yan, et al. Levels and health risk assessment of pesticides and metals in Lycium barbarum L. from different sources in Ningxia, China[J/OL]. Scientific Reports, 2022, 12(1): 561[2025-01-01]. DOI: 10.1038/s41598-021-04599-5.
[18] 冯学瑞, 马亚平, 刘佳欣, 等. CO2浓度升高处理下宁夏枸杞糖代谢相关酶及基因表达分析[J]. 林业科学, 2024, 60(3): 10−21.

FENG Xuerui, MA Yaping, LIU Jiaxin, et al. Analysis of enzyme and gene expression related to sugar metabolism in Lycium barbarum under elevated CO2 concentration treatment [J]. Scientia Silvae Sinicae, 2024, 60(3): 10−21.
[19] 谢云. 大气CO2浓度升高对宁夏枸杞根区土壤酶活性及微生物群落特征的影响[D]. 银川: 宁夏大学, 2021.

XIE Yun. Elevated CO2 Concentration on Soil Enzyme Activities and Microbial Commnity Characteristics in the Root Zone of Lycium barbarum L.[D]. Yinchuan: Ningxia University, 2021.
[20] 谢云, 郭芳芸, 曹兵. 大气CO2浓度倍增对宁夏枸杞根区土壤微生物与酶活性的影响[J]. 中国农学通报, 2021, 37(3): 90−97.

XIE Yun, GUO Fangyun, CAO Bing. Elevated CO2 concentrations: effects on soil microbial quantity and enzyme activity in root zone of Lycium barbarum [J]. Chinese Agricultural Science Bulletin, 2021, 37(3): 90−97.
[21] ZHAO Yi, WANG Yuqiang, SUN Shengnan, et al. Different forms and proportions of exogenous nitrogen promote the growth of alfalfa by increasing soil enzyme activity[J/OL]. Plants, 2022, 11(8): 1057[2025-01-01]. DOI: 10.3390/plants11081057.
[22] LIANG Xiaojie, AN Wei, LI Yuekun, et al. Impact of different rates of nitrogen supplementation on soil physicochemical properties and microbial diversity in goji berry [J]. Phyton, 2024, 93(3): 467−486.
[23] 马冲. CO2浓度升高与氮添加对宁夏枸杞光合特性及主要果实品质的影响[D]. 银川: 宁夏大学, 2023.

MA Chong. Effects of Elevated CO2 Concentration and Nitrogen Addition on Photosynthetic Characteristics and Main Fruit Quality of Lycium barbarum in Ningxia[D]. Yinchuan: Ningxia University, 2023.
[24] 马冲, 陆晖, 李运毛, 等. 模拟大气CO2浓度升高与氮添加对宁夏枸杞生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 209−218.

MA Chong, LU Hui, LI Yunmao, et al. Effects of elevated CO2 concentration and nitrogen addition in simulated atmosphere on growth and photosynthetic characteristics of Lycium barbarum [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024, 48(4): 209−218.
[25] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009.

ZHANG Zhiliang, QU Weijing, LI Xiaofang. Experimental Instruction of Plant Physiology[M]. 4th ed. Beijing: Higher Education Press, 2009.
[26] 中华人民共和国农业部. 中性、石灰性土壤铵态氮、有效磷、速效钾的测定联合浸提−比色法: NY/T 1848—2010[Z]. 北京: 中国农业出版社, 2010.

Ministry of Agriculture and Rural Affairs of the People’s Repubilc China. Method for Determination of Ammonium Nitrogen, Available Phosphorus and Rapidly-available Potassium in Neutrality or Calcareous Soil Universal Extract-colorimetric Method: NY/T 1848−2010 [Z]. Beijing: China Agriculture Press, 2010.
[27] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.

BAO Shidan. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[28] HUANG Wenjuan, HOULTON B Z, MARKLEIN A R, et al. Plant stoichiometric responses to elevated CO2 vary with nitrogen and phosphorus inputs: evidence from a global-scale meta-analysis[J/OL]. Scientific Reports, 2015, 5: 18225[2025-01-01]. DOI: 10.1038/srep18225.
[29] XU Qiufeng, LU Jiayu, DIJKSTRA F A, et al. Elevated CO2 and nitrogen interactively affect the rhizosphere priming effect of Cunninghamia lanceolata[J/OL]. Soil Biology and Biochemistry, 2023, 187: 109219[2025-01-01]. DOI: 10.1016/j.soilbio.2023.109219.
[30] 张继舟, 倪红伟, 王建波, 等. 氮沉降和CO2浓度增加对土壤磷素含量的影响[J]. 中国农学通报, 2013, 29(17): 182−187.

ZHANG Jizhou, NI Hongwei, WANG Jianbo, et al. Effects of nitrogen deposition and elevated CO2 concentration on soil phosphorus content [J]. Chinese Agricultural Science Bulletin, 2013, 29(17): 182−187.
[31] 苏立城, 陈晓珊, 罗志忠, 等. 氮添加对森林土壤有机碳库固存及CO2排放的影响研究进展[J]. 生态学报, 2024, 44(7): 2717−2733.

SU Licheng, CHEN Xiaoshan, LUO Zhizhong, et al. Effects of nitrogen addition on the organic carbon sequestration and CO2 emissions in forest soils: a review [J]. Acta Ecologica Sinica, 2024, 44(7): 2717−2733.
[32] WANG Ziwei, MA Shuqin, HU Yang, et al. Links between chemical composition of soil organic matter and soil enzyme activity in alpine grassland ecosystems of the Tibetan Plateau[J/OL]. Catena, 2022, 218: 106565[2025-01-01]. DOI: 10.1016/j.catena.2022.106565.
[33] 顾嘉怡, 吕欣平, 周宇琨, 等. 水稻根系分泌物对氮素吸收利用的影响研究进展[J]. 杂交水稻, 2024, 39(4): 9−15.

GU Jiayi, LÜ Xinping, ZHOU Yukun, et al. Research progress on the effects of root exudates on nitrogen uptake and utilization in rice [J]. Hybrid Rice, 2024, 39(4): 9−15.
[34] TARIQ M, LIU Yuexian, RIZWAN A, et al. Impact of elevated CO2 on soil microbiota: a meta-analytical review of carbon and nitrogen metabolism[J/OL]. Science of the Total Environment, 2024, 950: 175354[2025-01-01]. DOI: 10.1016/j.scitotenv.2024.175354.
[35] KIPROTICH K, MUEMA E, WEKESA C, et al. Unveiling the roles, mechanisms and prospects of soil microbial communities in sustainable agriculture[J/OL]. Discover Soil, 2025, 2(1): 10[2025-01-01]. DOI: 10.1007/s44378-025-00037-4.
[36] JING Yulin, ZHANG Yuhu, HAN I, et al. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil[J/OL]. Scientific Reports, 2020, 10(1): 8837[2025-01-01]. DOI: 10.1038/s41598-020-65796-2.
[37] 颜顾浙, 方伟, 卢络天, 等. 土壤酶活性对不同植物连作的差异响应[J]. 浙江农林大学学报, 2023, 40(3): 520−530.

YAN Guzhe, FANG Wei, LU Luotian, et al. Differential response of soil enzyme activity to continuous cropping of different plants [J]. Journal of Zhejiang A&F University, 2023, 40(3): 520−530.
[38] GU Y, WANG P, KONG C H. Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety [J]. European Journal of Soil Biology, 2009, 45(5/6): 436−441.
[39] 韦忆. 升高CO2浓度和干旱胁迫对红豆树幼苗生理生化的影响[D]. 贵阳: 贵州大学, 2023.

WEI Yi. Effects of Increasing CO2 Concentration and Drought Stress on Physiology and Biochemistry of Adzuki Bean Seedlings[D]. Guiyang: Guizhou University, 2023.
[40] HAN Bing, CHEN Weiqing, JIAO Yongqiang, et al. Effects of nitrogen fertilizer application on soil properties and arsenic mobilization in paddy soil[J/OL]. Sustainability, 2024, 16(13): 5565[2025-01-01]. DOI: 10.3390/su16135565.
[41] 王顺, 尹娟, 张海军, 等. 不同水氮处理对马铃薯土壤酶活性和产量的影响[J]. 节水灌溉, 2021(8): 67−73.

WANG Shun, YIN Juan, ZHANG Haijun, et al. Effects of different water and nitrogen treatments on soil enzyme activity and yield of potato [J]. Water Saving Irrigation, 2021(8): 67−73.
[42] 董冬, 施翠娥, 颜守保, 等. 大气CO2、O3升高对菲污染土壤酶活性和微生物量的影响[J]. 北方园艺, 2019(12): 92−99.

DONG Dong, SHI Cui’e, YAN Shoubao, et al. Effects of elevated atmospheric CO2 and O3 on soil enzyme activities and microbial biomass of phenanthrene polluted soil [J]. Northern Horticulture, 2019(12): 92−99.
[43] 康红梅, 李花花, 徐当会, 等. 大气CO2浓度及温度升高对高山灌木鬼箭锦鸡儿(Caragana jubata)生长及抗氧化系统的影响[J]. 生态学报, 2020, 40(1): 367−376.

KANG Hongmei, LI Huahua, XU Danghui, et al. Effects of elevated CO2 and temperature on Caragana jubata (Alpine shrub) growth and antioxidant systems [J]. Acta Ecologica Sinica, 2020, 40(1): 367−376.
[44] BAO Yong, GAO Ying, et al. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chinese Journal of Plant Ecology, 2018, 42(4): 508−516.
[45] 李文慧, 王继涛, 安明远, 等. 蚯蚓原位堆肥与不同比例生物炭对基质理化性质及番茄品质的作用研究[J]. 核农学报, 2024, 38(5): 943−954.

LI Wenhui, WANG Jitao, AN Mingyuan, et al. A study on the effects of in situ vermicomposting with different ratios of biochar on physicochemical properties of substrate and tomato quality [J]. Journal of Nuclear Agricultural Sciences, 2024, 38(5): 943−954.
[46] 王晨, 赵雨佳, 李春, 等. 动态转录调控微生物代谢途径研究进展[J]. 化工进展, 2019, 38(9): 4238−4246.

WANG Chen, ZHAO Yujia, LI Chun, et al. Advances in dynamic transcriptional regulation of microbial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4238−4246.
[47] 刘志中, 陈汉章. 园林植物磷胁迫下根系适应性研究[J]. 河北北方学院学报(自然科学版), 2022, 38(7): 30−37.

LIU Zhizhong, CHEN Hanzhang. Root adaptability of garden plants under phosphorus stress [J]. Journal of Hebei North University (Natural Science Edition), 2022, 38(7): 30−37.
[48] 刁婵, 鲁显楷, 田静, 等. 长期氮添加对亚热带森林土壤微生物碳源代谢多样性的影响[J]. 生态学报, 2019, 39(18): 6622−6630.

DIAO Chan, LU Xiankai, TIAN Jing, et al. Effects of long-term nitrogen addition on the metabolic diversity of microbial carbon sources in subtropical forest soils [J]. Acta Ecologica Sinica, 2019, 39(18): 6622−6630.
[49] 彭思利, 张鑫, 武仁杰, 等. 杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应[J]. 浙江农林大学学报, 2023, 40(4): 792−800.

PENG Sili, ZHANG Xin, WU Renjie, et al. Seasonal dynamic responses of soil arbuscular mycorrhizal fungal community to nitrogen additions in a poplar plantation [J]. Journal of Zhejiang A&F University, 2023, 40(4): 792−800.