[1] MADRIGAL J, MARINO E, GUIJARRO M, et al. Evaluation of the flammability of gorse (Ulex europaeus L. ) managed by prescribed burning [J]. Annals of Forest Science, 2012, 69(3): 387−397.
[2] FERNANDES P M, BOTELHO H S, REGO F C, et al. Empirical modelling of surface fire behaviour in maritime pine stands [J]. International Journal of Wildland Fire, 2009, 18(6): 698−710.
[3] AGEE J K, SKINNER C N. Basic principles of forest fuel reduction treatments [J]. Forest Ecology and Management, 2005, 211(1/2): 83−96.
[4] 贺红士, 常禹, 胡远满, 等. 森林可燃物及其管理的研究进展与展望[J]. 植物生态学报, 2010, 34(6): 741−752.

HE Hongshi, CHANG Yu, HU Yuanman, et al. Contemporary studies and future perspectives of forest fuel and fuel management [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 741−752.
[5] 艾也博, 寸应得, 范雅倩, 等. 北京松山油松林地表可燃物负荷量的影响因素[J]. 生态学杂志, 2018, 37(9): 2559−2565.

AI Yebo, CUN Yingde, FAN Yaqian, et al. Factors affecting surface fuel load of Pinus tabuliformis forest in Songshan, Beijing [J]. Chinese Journal of Ecology, 2018, 37(9): 2559−2565.
[6] 刘讯, 黄韵, 丁波, 等. 大娄山典型林分地表细小死可燃物载量影响因子研究[J]. 中南林业科技大学学报, 2023, 43(8): 9−16.

LIU Xun, HUANG Yun, DING Bo, et al. Influencing factors of surface fine dead fuel loading in typical forest stands of Dalou Mountain [J]. Journal of Central South University of Forestry & Technology, 2023, 43(8): 9−16.
[7] LIU Liang, LI Shaoda, YANG Wunian, et al. Forest canopy water content monitoring using radiative transfer models and machine learning [J/OL]. Forests, 2023, 14 (7): 1418[2024-05-05]. DOI: 10.3390/f14071418.
[8] 胡致远, 罗文强, 晏鄂川, 等. 基于改进层次分析法的英山县地质灾害易发性评价[J]. 安全与环境工程, 2018, 25(4): 28−32, 40

HU Zhiyuan, LUO Wenqiang, YAN E’chuan, et al. IAHP-based evaluation of susceptibility of geological hazards in Yingshan County [J]. Safety and Environmental Engineering, 2018, 25(4): 28−32.
[9] 鲜明睿, 党巍, 代斌, 等. 川西南云南松林可燃物载量模型及其影响因素研究[J]. 林业资源管理, 2023(2): 64−69.

XIAN Mingrui, DANG Wei, DAI Bin, et al. Study on fuel loads models of Pinus yunnanensis in the southwest of Sichuan and the impact factors [J]. Forest Resources Management, 2023(2): 64−69.
[10] LI Yingchang, LI Chao, LI Mingyang, et al. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms [J/OL]. Forests, 2019, 10 (12): 1073[2024-05-05]. DOI: 10.3390/f10121073.
[11] 陈宗杰, 杨武年, 张琬琳, 等. 基于植被冠层含水量反演数据的森林易燃程度评价[J]. 测绘通报, 2023(4): 99−105.

CHEN Zongjie, YANG Wunian, ZHANG Wanlin, et al. Evaluation of forest flammability based on inversion data of vegetation canopy water content [J]. Bulletin of Surveying and Mapping, 2023(4): 99−105.
[12] 李史欣, 张福全, 林海峰. 基于机器学习算法的森林火灾风险评估研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 49−56.

LI Shixin, ZHANG Fuquan, LIN Haifeng. Research on forest fire risk evaluation based on machine learning algorithm [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(5): 49−56.
[13] PROBST P, BOULESTEIX A L. To tune or not to tune the number of trees in random forest [J]. The Journal of Machine Learning Research, 2017, 18(1): 6673−6690.
[14] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5−32.
[15] 赵艳艳, 张晓平, 陈明星, 等. 中国城市空气质量的区域差异及归因分析[J]. 地理学报, 2021, 76(11): 2814−2829.

ZHAO Yanyan, ZHANG Xiaoping, CHEN Mingxing, et al. Regional variation of urban air quality in China and its dominant factors [J]. Acta Geographica Sinica, 2021, 76(11): 2814−2829.
[16] 刘坚, 李树林, 陈涛. 基于优化随机森林模型的滑坡易发性评价[J]. 武汉大学学报 (信息科学版), 2018, 43(7): 1085−1091.

LIU Jian, LI Shulin, CHEN Tao. Landslide susceptibility assesment based on optimized Random Forest Model [J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1085−1091.
[17] 王瑞红, 潘刚, 张新军, 等. 色季拉山急尖长苞冷杉幼苗天然更新的影响因子研究[J]. 浙江农林大学学报, 2021, 38(3): 652−658.

WANG Ruihong, PAN Gang, ZHANG Xinjun, et al. Natural regeneration factors of Abies georgei var. smithii seedlings in Sejila Mountain [J]. Journal of Zhejiang A&F University, 2021, 38(3): 652−658.
[18] HE Jinyuan, FAN Chunyu, GENG Yan, et al. Assessing scale-dependent effects on forest biomass productivity based on machine learning [J/OL]. Ecology and Evolution, 2022, 12 (7): e9110[2024-05-05]. DOI: 10.1002/ece3.9110.
[19] 丁志丹, 孙玉军, 孙钊. 基于GF-2的乔木生物量估测模型研究[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 135−141.

DING Zhidan, SUN Yujun, SUN Zhao. Estimation of tree biomass with GF-2 [J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 135−141.
[20] 张秀芳, 何东进, 李颖, 等. 不同演替阶段马尾松林地表可燃物负荷量及其影响因子[J]. 林业科学研究, 2021, 34(3): 108−117.

ZHANG Xiufang, HE Dongjin, LI Ying, et al. Surface fuel loading of Pinus massoniana forest in different succession stages and relevant affecting factors [J]. Forest Research, 2021, 34(3): 108−117.
[21] 马云辉, 马长明, 冯淑瑶, 等. 河北省蒙古栎次生林林下可燃物负荷量及其影响因素[J]. 应用生态学报, 2023, 34(8): 2082−2090.

MA Yunhui, MA Changming, FENG Shuyao, et al. Understory fuel loads and the impact factors of Quercus mongolica natural secondary forest in Hebei Province, China [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2082−2090.
[22] 孙武, 牛树奎, 赵蓓, 等. 大岗山地区主要林型可燃物调查与林火行为[J]. 江西农业大学学报, 2012, 34(6): 1171−1179.

SUN Wu, NIU Shukui, ZHAO Bei, et al. Forest fuel survey and fire behavior in main forests in Dagangshan [J]. Acta Agriculturae Universitatis Jiangxiensis, 2012, 34(6): 1171−1179.
[23] D’ESTE M, GANGA A, ELIA M, et al. Modeling fire ignition probability and frequency using Hurdle models: a cross-regional study in southern Europe [J/OL]. Ecological Processes, 2020, 9 (1)[2024-05-05]. DOI: 10.1186/s13717-020-00263-4.
[24] ELIA M, LAFORTEZZA R, COLANGELO G, et al. A streamlined approach for the spatial allocation of fuel removals in wildland-urban interfaces [J]. Landscape Ecology, 2014, 29: 1771−1784.
[25] AJIN R S, LOGHIN A M, VINOD P G, et al. Forest fire risk zone mapping using RS and GIS techniques: a study in Achankovil Forest Division, Kerala, India [J/OL]. Journal of Earth, Environment and Health Sciences, 2016, 2 (3): 109[2024-05-05]. DOI: 10.4103/2423-7752.199288.
[26] CHUVIECO E, WAGTENDONK J, RIAÑO D, et al. Estimation of fuel conditions for fire danger assessment [M]//CHUVIECO E. Earth Observation of Wildland Fires in Mediterranean Ecosystems. Berlin: Springer, 2009: 83−96.
[27] KARWA R, KARWA R. Laws of thermal radiation [M]// Jodhpur Institute of Engineering and Technology. Heat and Mass Transfer. Singapore: Springer, 2020: 733−765.
[28] 杨文军, 张杨, 王福生, 等. 基于高分光学遥感影像的湖南省油茶林地识别技术研究: 以汉寿县为例[J]. 中南林业调查规划, 2023, 42(4): 30−34, 62.

YANG Wenjun, ZHANG Yang, WANG Fusheng, et al. Study on Camellia oleifera forest identification technology based on high resolution optical remote sensing image in Hunan Province: taking Hanshou County as an Example [J]. Central South Forestry Iventory and Planning, 2023, 42(4): 30−34, 62.
[29] STEFANIDOU A, GITAS I Z , KORHONEN L, et al. Multispectral LiDAR-based estimation of surface fuel load in a dense coniferous forest [J/OL]. Remote Sensing, 2020, 12 (20)[2024-05-05]. DOI: 10.3390/rs12203333.
[30] GIANNICO V, CHEN JIQUAN, SHAO Changliang, et al. Contributions of landscape heterogeneity within the footprint of eddy-covariance towers to flux measurements [J]. Agricultural & Forest Meteorology, 2018, 260/261: 144−153.