[1] GAMUYAO R, NAGAI K, AYANO M, et al. Hormone distribution and transcriptome profiles in bamboo shoots provide insights on bamboo stem emergence and growth [J]. Plant and Cell Physiology, 2017, 58(4): 702 − 716.
[2] WEI Qiang, JIAO Chen, DING Yulong, et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo [J]. Tree Physiology, 2018, 38(4): 641 − 654.
[3] 李玉敏, 冯鹏飞. 基于第9次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6): 45 − 48.

LI Yumi, FENG Pengfei. Bamboo resources in China based on the Ninth National Forest Inventory Data [J]. World Bamboo and Rattan, 2019, 17(6): 45 − 48.
[4] PENG Zhenghua, LU Ying, LI Lubin, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) [J]. Nature Genetics, 2013, 45(4): 456 − 461.
[5] WANG Kaili, ZHANG Yuanyuan, ZHANG Hengmu, et al. MicroRNAs play important roles in regulating the rapid growth of the Phyllostachys edulis culm internode [J]. New Phytologist, 2021, 231(6): 2215 − 2230.
[6] PENG Zhenghua, ZHANG Chunling, ZHANG Ying, et al. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis) [J/OL]. PLoS One, 2013, 8(11): e78944[2022-11-05]. doi: 10.1371/journal.pone.0078944.
[7] CHEN Ming, GUO Lin, RAMAKRISHNAN M, et al. Rapid growth of moso bamboo (Phyllostachys edulis): cellular roadmaps, transcriptome dynamics, and environmental factors [J]. The Plant Cell, 2022, 34(10): 3577 − 3610.
[8] 毛美红, 丁笑章, 傅柳方, 等. 干旱对毛竹林新竹成竹影响的调查分析[J]. 世界竹藤通讯, 2012, 10(1): 12 − 15.

MAO Meihong, DING Xiaozhang, FU Liufang, et al. Investigation of the effect of drought on new moso forest cultivation [J]. World Bamboo and Rattan, 2012, 10(1): 12 − 15.
[9] TIAN Chaoguang, WAN Ping, SUN Shouhong, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis [J]. Plant Molecular Biology, 2004, 54(4): 519 − 532.
[10] ZHAO Hansheng, DONG Lili, SUN Huayu, et al. Comprehensive analysis of multi-tissue transcriptome data and the genome-wide investigation of GRAS family in Phyllostachys edulis [J/OL]. Scientific Reports, 2016, 6(1): 27640[2022-11-05]. doi: 10.1038/srep27640.
[11] FAN Yu, YAN Jun, LAI Deli, et al. Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench] [J/OL]. BMC Genomics, 2021, 22(1): 509[2022-11-05]. doi: 10.1186/s12864-021-07848-z.
[12] GUO Yuyu, WU Hongyu, LI Xiang, et al. Identification and expression of GRAS family genes in maize (Zea mays L.)[J/OL]. PLoS One, 2017, 12(9): e0185418[2022-11-05]. doi: 10.1371/journal.pone.0185418.
[13] JAISWAL V, KAKKAR M, KUMARI P, et al. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants [J/OL]. iScience, 2022, 25(9): 105026[2022-11-05]. doi: 10.1016/j.isci.2022.105026.
[14] BOLLE C, KONCZ C, CHUA N H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction [J]. Genes and Development, 2000, 14(10): 1269 − 1278.
[15] IKEDA A, UEGUCHI-TANAKA M, SONODA Y, et al. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8 [J]. The Plant Cell, 2001, 13(5): 999 − 1010.
[16] KAMIYA N, ITOH J, MORIKAMI A, et al. The SCARECROW gene’s role in asymmetric cell divisions in rice plants [J]. The Plant Journal, 2003, 36(1): 45 − 54.
[17] MA Hongshuang, LIANG Dan, SHUAI Peng, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2010, 61(14): 4011 − 4019.
[18] LAURENZIO L D, WYSOCKA-DILLER J, MALAMY J E, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root [J]. Cell, 1996, 86(3): 423 − 433.
[19] DAY R B, SHIBUYA N, MINAMI E. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor [J]. Biochimica et Biophysica Acta, 2003, 1625(3): 261 − 268.
[20] DAY R B, TANABE S, KOSHIOKA M, et al. Two rice GRAS family genes responsive to N-acetylchitooligosaccharide elicitor are induced by phytoactive gibberellins: evidence for cross-talk between elicitor and gibberellin signaling in rice cells [J]. Plant Molecular Biology, 2004, 54(2): 261 − 272.
[21] 吕煜梦, 张舒婷, 王雪晶, 等. 多花黄精几丁质诱导赤霉素应答基因(CIGR)克隆及其功能[J]. 应用与环境生物学报, 2020, 26(2): 255 − 263.

LÜ Yumeng, ZHANG Shuting, WANG Xuejing, et al. Cloning and preliminary functional study of the chitin-inducible gibberellin-responsive (CIGR) gene in Polygonatum cyrtonema Hua [J]. Chinese Journal of Applied &Environmental Biology, 2020, 26(2): 255 − 263.
[22] 姜福星, 黄远祥, 周鹏, 等. 白花虎眼万年青QtCIGR1基因的克隆及功能分析[J]. 分子植物育种, 2018, 16(17): 5584 − 5590.

JIANG Fuxing, HUANG Yuanxiang, ZHOU Peng, et al. Cloning and functional analysis of QtCIGR1 gene from Ornithogalum thyrsoides [J]. Molecular Plant Breeding, 2018, 16(17): 5584 − 5590.
[23] KOVI M R, ZHANG Yushan, YU Sibin, et al. Candidacy of a chitin-inducible gibberellin-responsive gene fora major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1 [J]. Theoretical and Applied Genetic, 2011, 123(5): 705 − 714.
[24] SUN Xiaolin, XUE Bin, JONES W T, et al. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development [J]. Plant Molecular Biology, 2011, 77(3): 205 − 223.
[25] ZHAO Hansheng, GAO Zhimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J/OL]. Gigascience, 2018, 7(10): giy115[2022-11-05]. doi: 10.1093/gigascience/giy115.
[26] PYSH L D, WYSOCKA-DILLER J W, CAMILLERI C, et al. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes [J]. The Plant Journal, 1999, 18(1): 111 − 119.
[27] CHEN C Y, HSIEH M H, YANG C C, et al. Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii [J]. Phytochemistry, 2010, 71(11/12): 1270 − 1279.
[28] 白青松. 毛竹SAURDELLA基因的鉴定、克隆及功能分析[D]. 北京: 中国林业科学研究院, 2017.

BAI Qingsong. Identification, Clone and Function Analysis of SAUR and DELLA Genes in Moso Bamboo [D]. Beijing: Chinese Academy of Forestry, 2017.
[29] 魏涵天. 毛竹高生长相关PeGA20ox1基因的克隆及功能分析[D]. 杭州: 浙江农林大学, 2021.

WEI Hantian. Cloning and Functional Analysis of PeGA20ox1 Gene Related to Height Growth in Phyllostachys edulis[D]. Hangzhou: Zhejiang A&F University, 2021.
[30] 林源. 小佛肚竹BvCIGR基因的生物学功能分析及在水稻种质创新的应用[D]. 杭州: 浙江农林大学, 2014.

LIN Yuan. Biological Function Analysis and Application in Rice Germplasm Innovation of BvCIGR Gene [D]. Hangzhou: Zhejiang A&F University, 2014.
[31] 崔凯. 毛竹茎秆快速生长的机理研究[D]. 北京: 中国林业科学研究院, 2011.

CUI Kai. The Mechanism Research of Fast-growing Culms of Phyllostachys edulis [D]. Beijing: Chinese Academy of Forestry, 2011.
[32] 胡智勇. 毛竹的生物学特性及栽植技术[J]. 安徽农学通报, 2014, 20(12): 117 − 118.

HU Zhiyong. Biological characteristics and planting techniques of moso bamboo (Phyllostachys edulis) [J]. Anhui Agricultural Science Bulletin, 2014, 20(12): 117 − 118.
[33] HOU Dan, ZHAO Zhongyu, HU Qiutao, et al. PeSNAC-1 a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice [J]. Tree Physiology, 2020, 40(12): 1792 − 1806.
[34] GUO Pengcheng, WEN Jing, YANG Jin, et al. Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response [J]. Planta, 2019, 250(4): 1051 − 1072.
[35] WANG Shengsheng, DUAN Zhen, YAN Qi, et al. Genome-wide identification of the GRAS family genes in Melilotus albus and expression analysis under various tissues and abiotic stresses [J/OL]. International Journal of Molecular Sciences, 2022, 23(13): 7403[2022-11-05]. doi: 10.3390/ijms23137403.
[36] HE Zihang, TIAN Zengzi, ZHANG Qun, et al. Genome-wide identification, expression and salt stress tolerance analysis of the GRAS transcription factor family in Betula platyphylla [J/OL]. Frontiers in Plant Science, 2022, 13: 1022076[2022-11-05]. doi: 10.3389/fpls.2022.1022076.
[37] XU Kai, CHEN Shoujun, LI Tianfei, et al. OsGRAS23, a rice GRAS transcription factor gene, is involved in drought stress response through regulating expression of stress-responsive genes [J/OL]. BMC Plant Biology, 2015, 15: 141[2022-11-05]. doi: 10.1186/s12870-015-0532-3.
[38] YUAN Yangyang, FANG Linchun, KARUNGO S K, et al. Overexpression of VaPAT1, a GRAS transcription factor from Vitis amurensis, confers abiotic stress tolerance in Arabidopsis [J]. Plant Cell Report, 2016, 35(3): 655 − 666.