[1] 王杰, 贺文闯, 向坤莉, 等. 基因组时代的植物系统发育研究进展[J]. 浙江农林大学学报, 2023, 40(1): 227 − 236.

WANG Jie, HE Wenchuang, XIANG Kunli, et al. Advances in plant phylogeny in the genome era [J]. Journal of Zhejiang A&F University, 2023, 40(1): 227 − 236.
[2] SUGIURA M, HIROSE T, SUGITA M. Evolution and mechanism of translation in chloroplasts [J]. Annual Review of Genetics, 1998, 32(1): 437 − 459.
[3] PALMER J D. Isolation and structural analysis of chloroplast DNA [J]. Methods in Enzymology, 1986, 118(11): 167 − 186.
[4] LI Yunfeng, LUO Lian, LIU Yang, et al. The Bryophyte Phylogeny Group: a revised familial classification system based on plastid phylogenomic data [J]. Journal of Systematics and Evolution, 2024, 62(4): 577 − 588.
[5] CHOI S S, KWON W, PARK J. The complete chloroplast genome of Scapania ampliata Steph., 1897 (Scapaniaceae, Jungermanniales) [J]. Mitochondrial DNA Part B, 2020, 5 (3): 2890 − 2892.
[6] GRAHAM S W, LAM V K Y, MERCKX V S F T. Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes [J]. New Phytologist, 2017, 214(1): 48 − 55.
[7] LUBNA, ASAF S, JAN R, et al. Plastome diversity and evolution in mosses: insights from structural characterization, comparative genomics, and phylogenetic analysis [J/OL]. International Journal of Biological Macromolecules, 2024, 257 (2): 128608[2024-05-01]. doi: 10.1016/j.ijbiomac.2023.128608.
[8] 高谦, 吴玉环. 中国苔藓志 第10卷 叶苔目(裂叶苔科—新绒苔科)[M]. 北京: 科学出版社, 2008: 433 − 436.

GAO Qian, WU Yuhuan. Flora Bryophytorum Sinicorrum Vol.10 Jungermanniales (Lophoziaceae−Neotrichocoleaceae) [M]. Beijing: Science Press, 2008: 433 − 436.
[9] CHOI S S, BAKALIN V, PARK S J. Integrating continental mainland and islands in temperate East Asia: liverworts and hornworts of the Korean Peninsula [J]. PhytoKeys, 2021, 176: 131 − 226.
[10] 何强, 贾渝. 中国苔藓植物濒危等级的评估原则和评估结果[J]. 生物多样性, 2017, 25(7): 774 − 780.

HE Qiang, JIA Yu. Assessing the threat status of China’s bryophyte [J]. Biodiversity Science, 2017, 25(7): 774 − 780.
[11] EVANS A W. A remarkable Ptilidium from Japan [J]. Revue Bryologique, 1905, 32(4): 57 − 60.
[12] HORIKAWA Y. Monographia Hepaticarum Australi-Japonicarum [J]. Journal of Science of the Hiroshima University. Series B, 1934, 2: 101 − 325.
[13] LIU Yang, JIA Yu, WANG Wei, et al. Phylogenetic relationships of two endemic genera from East Asia Trichocoleopsis and Neotrichocolea [J]. Annals of the Missouri Botanical Garden, 2008, 95(3): 459 − 470.
[14] DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue [J]. Phytochemistry, 1987, 19(1): 11 − 15.
[15] CHEN Yuxin, CHEN Yongsheng, SHI Chunmei, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data [J/OL]. Giga Science, 2018, 7 : gix120[2024-05-01]. doi: 10.1093/gigascience/gix120.
[16] JIN Jianjun, YU Wenbin, YANG Junbo, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J/OL]. Genome Biology, 2020, 21 (1): 241[2024-05-01]. doi: 10.1186/s13059-020-02154-5.
[17] WICK R R, SCHULTZ M B, ZOBEL J, et al. Bandage: interactive visualization of de novo genome assemblies [J]. Bioinformatics, 2015, 31: 3350 − 3352.
[18] SHI Linchun, CHEN Haimei, JIANG Mei, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucleic Acids Research, 2019, 47: W65 − W73.
[19] LOHSE M, DRECHSEL O, KAHLAU S, et al. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets [J]. Nucleic Acids Research, 2013, 41: W575 − W581.
[20] BEIER S, THIEL T, MUNCH T, et al. MISA-web: A web server for microsatellite prediction [J]. Bioinformatics, 2017, 33: 2583 − 2585.
[21] SHARP P M, LI W H. The codon Adaptation Index − a measure of directional synonymous codon usage bias [J]. Nucleic Acids Research, 1987, 15(3): 1281 − 1295.
[22] KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Research, 2001, 29(22): 4633 − 4642.
[23] AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34: 3030 − 3031.
[24] KATOH K, ROZEWICKI J, YAMADA K D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization [J]. Briefings in Bioinformatics, 2019, 20(4): 1160 − 1166.
[25] KURAKU S, ZMASEK C M, NISHIMURA O, et al. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity [J]. Nucleic Acids Research, 2013, 41(W1): W22 − W28.
[26] FAN Zhifeng, MA Changle. Comparative chloroplast genome and phylogenetic analyses of Chinese Polyspora [J/OL]. Scientific Reports, 2022, 12 (1): 15984[2024-05-01]. doi: 10.1038/s41598-022-16290-4.
[27] STAMATAKIS A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models [J]. Bioinformatics, 2006, 22(21): 2688 − 2690.
[28] RONQUIST F, HUELSENBECK J P. MrBayes 3: bayesian phylogenetic inference under mixed models [J]. Bioinformatics, 2003, 19(12): 1572 − 1574.
[29] YU Ying, LIU Hongmei, YANG Junbo, et al. Exploring the plastid genome disparity of liverworts [J]. Journal of Systematics and Evolution, 2019, 57(4): 382 − 394.
[30] 尹跃, 安巍, 赵建华, 等. 黑果枸杞转录组SSR信息分析及分子标记开发[J]. 浙江农林大学学报, 2019, 36(2): 422 − 428.

YIN Yue, AN Wei, ZHAO Jianhua, et al. SSR information in transcriptome and development of molecular markers in Lycium ruthenicum [J]. Journal of Zhejiang A&F University, 2019, 36(2): 422 − 428.
[31] ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces [J]. Nucleic Acids Research, 2000, 28(10): 2084 − 2090.
[32] BARBHUIYA P A, UDDIN A, CHAKRABORTY S. Analysis of compositional properties and codon usage bias of mitochondrial CYB gene in anura, urodela and gymnophiona [J/OL]. Gene, 2020, 751 : 144762[2024-05-01]. doi:10.1016/j.gene.2020.144762.
[33] 张家榕, 雷万钧. 18种苔藓植物rbcL基因的密码子偏性及聚类分析[J]. 山西农业大学学报(自然科学版), 2020, 40(6): 1 − 12.

ZHANG Jiarong, LEI Wanjun. Cluster analysis and codon usage bias studies of rbcL genes in 18 bryophytes [J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2020, 40(6): 1 − 12.
[34] XIA Conglong, WANG Manjiong, GUAN Yunhui, et al. Comparative analysis of the chloroplast genome for aconitum species: Genome structure and phylogenetic relationships [J/OL]. Frontiers in Genetics, 2022, 13 : 878182[2024-05-01]. doi: 10.3389/fgene.2022.878182.
[35] DONG Shanshan, YU Jin, ZHANG Li, et al. Phylotranscriptomics of liverworts: revisiting the backbone phylogeny and ancestral gene duplications [J]. Annals of Botany, 2022, 130(7): 951 − 964.
[36] BECHTELER J, PEÑALOZA-BOJACÁ G, BELL D, et al. Comprehensive phylogenomic time tree of bryophytes reveals deep relationships and uncovers gene incongruences in the last 500 million years of diversification [J/OL]. American Journal of Botany, 2023, 110 (11): e16249[2024-05-01]. doi: 10.1002/ajb2.16249.