[1] CHEN Xiongwen, JIN Hangbiao. Review of cultivation and development of Chinese torreya in China [J]. Forests,Trees and Livelihoods, 2018, 28(1): 68 − 78.
[2] 黎章矩, 骆成方, 程晓建, 等. 香榧种子成分分析及营养评价[J]. 浙江林学院学报, 2005, 22(5): 540 − 544.

LI Zhangju, LUO Chengfang, CHENG Xiaojian, et al. Component analysis and nutrition evaluation of seeds of Torreya grandis ‘Merrillii’ [J]. Journal of Zhejiang Forestry College, 2005, 22(5): 540 − 544.
[3] 陈振德, 陈志良, 侯连兵, 等. 香榧子油对实验性动脉粥样硬化形成的影响[J]. 中药材, 2000, 23(9): 551 − 553.

CHEN Zhende, CHEN Zhiliang, HOU Lianbing, et al. The preventive effect of the oil from the seed of Torreya grandis cv. Merrillii on experimental atherosclerosis in rats [J]. Journal of Chinese Medicinal Materials, 2000, 23(9): 551 − 553.
[4] 李红, 张露, 刘延奇, 等. 香榧子油的理化性质及脂肪酸组成分析 [J]. 中国粮油学报, 2012, 27(5): 65 − 69.

LI Hong, ZHANG Lu, LIU Yanqi, et al. Analysis on physicochemical properties and fatty acid composition of Torreya grandis oil [J] Journal of the Chinese Cereals and Oils Association, 2012, 27(5): 65 − 69.
[5] 陈振德, 郑汉臣, 傅秋华, 等. 国产榧属植物种子油含量及其脂肪酸测定[J]. 中国中药杂志, 1998, 44(8): 456 − 458.

CHEN Zhende, ZHENG Hanchen, FU Qiuhua, et al. Determination of oil contents and fatty acids in seeds of Torreya Arn. in China [J]. China Journal of Chinese Materia Medica, 1998, 44(8): 456 − 458.
[6] 于美, 张川, 曾茂茂, 等. 香榧坚果中油脂和蛋白质的研究进展[J]. 食品科学, 2016, 37(17): 252 − 256.

YU Mei, ZHANG Chuan, ZENG Maomao, et al. Recent advances in research on oils and proteins from Torreya grandis nuts [J]. Food Science, 2016, 37(17): 252 − 256.
[7] CUI Hongxin, DUAN Fangfang, JIA Shanshan, et al. Antioxidant and tyrosinase inhibitory activities of seed oils from Torreya grandis Fort. ex Lindl. [J/OL]. BioMed Research International, 2018, 2018: 5314320[2023-03-20]. doi: 10.1155/2018/5314320.
[8] DING Mingzhu, LOU Heqiang, CHEN Wenchao, et al. Comparative transcriptome analysis of the genes involved in lipid biosynthesis pathway and regulation of oil body formation in Torreya grandis kernels [J/OL]. Industrial Crops and Products, 2020, 145: 112051[2023-03-20]. doi: 10.1016/j.indcrop.2019.112051.
[9] LOU Heqiang, SONG Lili, LI Xiaolong, et al. The Torreya grandis genome illuminates the origin and evolution of gymnosperm-specific sciadonic acid biosynthesis [J/OL]. Nature Communication, 2023, 14(1): 1315[2023-03-20]. doi: 10.1038/s41467-023-37038-2.
[10] 田荆祥, 吴美春, 仲山民, 等. 香榧种子油脂形成过程的理化性质及脂肪酸分析[J]. 浙江林学院学报, 1989, 6(1): 16 − 22.

TIAN Jingxiang, WU Meichun, ZHONG Shanmin, et al. Physical and chemical analysis of ths seed of Torreya grandis Fort. [J]. Journal of Zhejiang Forestry College, 1989, 6(1): 16 − 22.
[11] 王玫鹃, 莫润宏, 钟冬莲, 等. 香榧果实生长后期油脂及脂溶性活性物质的动态变化规律 [J/OL]. 中国油脂, 2022-05-26[2023-03-20]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220525.1939.010.html.

WANG Meijuan, MO Runhong, ZHONG Donglian, et al. Dynamic changes of lipids and liposoluble substances in Torreya grandis kernel at late growth stage [J/OL]. China Oils and Fats, 2022-05-26[2023-03-20]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220525.1939.010.html.
[12] 叶珊, 王为宇, 周敏樱, 等. 不同采收成熟度和堆沤方式对香榧种子堆沤后熟品质的影响[J]. 林业科学, 2017, 53(11): 43 − 51.

YE Shan, WANG Weiyu, ZHOU Minying, et al. Effects of different harvest maturity and after-ripening ways on the harvested quality of Torreya grandis ‘Merrillii’ seeds [J]. Scientia Silvae Sinicae, 2017, 53(11): 43 − 51.
[13] 朱海东, 曾茂茂, 何志勇, 等. 不同产地香榧假种皮精油组分分析[J]. 食品与机械, 2021, 37(6): 62 − 68.

ZHU Haidong, ZENG Maomao, HE Zhiyong, et al. Effects of origin on the compositions of essential oil from fresh aril of Torreya grandis cv. Merrilli prepared by hydro-distillation [J]. Food &Machinery, 2021, 37(6): 62 − 68.
[14] 孙小红, 周瑾, 胡春霞, 等. 不同海拔对香榧种子外观性状及营养品质的影响[J]. 果树学报, 2019, 36(4): 476 − 485.

SUN Xiaohong, ZHOU Jin, HU Chunxia, et al. Effects of different altitudes on seed morphology and nutritional composition of Torreya grandis ‘Merrilli’ [J]. Journal of Fruit Science, 2019, 36(4): 476 − 485.
[15] 孙小红, 胡绍泉, 王国夫, 等. 基于会稽山古香榧林和新香榧林土壤环境的香榧籽品质分析[J]. 武汉大学学报(理学版), 2020, 66(1): 87 − 94.

SUN Xiaohong, HU Shaoquan, WANG Guofu, et al. Analysis of Torreya grandis seeds quality based on soil environment survey of ancient and new Torreya grandis forests in Kuaiji mountain [J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(1): 87 − 94.
[16] HU Yuanyuan, ZHANG Yongling, YU Weiwu, et al. Novel insights into the influence of seed sarcotesta photosynthesis on accumulation of seed dry matter and oil content in Torreya grandis ‘Merrillii’[J/OL]. Front Plant Science, 2017, 8: 2179[2023-03-20]. doi: 10.3389/fpls.2017.02179.
[17] ZHANG Rui, ZHANG Yongling, SONG Lili, et al. Biochar enhances nut quality of Torreya grandis and soil fertility under simulated nitrogen deposition [J]. Forest Ecology and Management, 2017, 391: 321 − 329.
[18] KHATTAB R Y, ARNTFIELD S D. Functional properties of raw and processed canola meal [J]. Food Science and Technology, 2009, 42(6): 1119 − 1124.
[19] TAKAGI T, ITABASHI Y. cis-5-olefinic unusual fatty acids in seed lipids of gymnospermae and their distribution in triacylglycerols [J]. Lipids, 1982, 17: 716 − 723.
[20] WOLFF R L, LAVIALLE O, PÉDRONO F, et al. Fatty acid composition of Pinaceae as taxonomic markers [J]. Lipids, 2001, 36(5): 439 − 451.
[21] WOLFF R L, LAVIALLE O, PÉDRONO F, et al. Abietoid seed fatty acid compositions: a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae [J]. Lipids, 2002, 37(1): 17 − 26.
[22] JAMIESON G R, REID E H. The leaf lipids of some conifer species [J]. Phytochemistry, 1972, 11(1): 269 − 275.
[23] MONGRAND S, BADOC A, PATOUILLE B, et al. Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition [J]. Phytochemistry, 2001, 58(1): 101 − 115.
[24] EKMAN R. New polyenoic fatty acids in Norway spruce wood [J]. Phytochemistry, 1980, 19: 147 − 148.
[25] 牛丽影, 吴晓琴, 张英. 香榧籽油的脂肪酸及不皂化物组成分析[J]. 中国粮油学报, 2011, 26(6): 52 − 55.

NIU Liying, WU Xiaoqin, ZHANG Ying. Analysis on fatty acid and unsaponifiable matter in Torreya grandis var. Merriii seed oil [J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(6): 52 − 55.
[26] WOLFF R L, PÉDRONO F, MARPEAU A M, et al. The seed fatty acid composition and the distribution of Δ5-olefinic acids in the triacylglycerols of some taxaceae (Taxus and Torreya) [J]. Journal of the American Oil ChemistsSociety, 1998, 75(11): 1637 − 1641.
[27] 温思思, 陆元超, 丁珏, 等. 金松酸对HepG2细胞中甘油三酯蓄积的影响[J]. 中国粮油学报, 2022, 37(11): 191 − 198.

WEN Sisi, LU Yuanchao, DING Jue, et al. Effects of sciadonic acid on triglyceride accumulation in HepG2 cells [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 191 − 198.
[28] 葛林梅, 郜海燕, 陈杭君, 等. 加工工艺对香榧油脂氧化和抗氧化活性的影响[J]. 中国粮油学报, 2011, 26(5): 42 − 46.

GE Linmei, GAO Haiyan, CHEN Hangjun, et al. Effect of processing on lipid oxidation and antioxidant ability of Torreya grandis [J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(5): 42 − 46.
[29] 朱杰丽, 柴振林, 吴翠蓉, 等. 浙江省香榧及其油脂综合性状研究[J]. 中国粮油学报, 2019, 34(3): 67 − 73.

ZHU Jieli, CHAI Zhenlin, WU Cuirong, et al. Comprehensive research on the quality of Torreya grandis and its oil in Zhejiang Province [J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(3): 67 − 73.
[30] ZHOU Minying, SONG Lili, YE Shan, et al. New sights into lipid metabolism regulation by low temperature in harvested Torreya grandis nuts [J]. Journal of Science Food Agriculture, 2019, 99(9): 4226 − 4234.
[31] ZHANG Zuying, JIN Hangbiao, SUO Jinwei, et al. Effect of temperature and humidity on oil quality of harvested Torreya grandis cv. Merrillii nuts during the after-ripening stage [J/OL]. Front Plant Science, 2020, 11: 573681[2023-03-20]. doi: 10.3389/fpls.2020.573681.
[32] 杨蕾, 赵荻, 胡渊渊, 等. 不同加工方式香榧香气物质和油脂品质的比较分析[J]. 浙江农林大学学报, 2022, 39(1): 22 − 31.

YANG Lei, ZHAO Di, HU Yuanyuan, et al. Comparative analysis of aroma components and oil quality of Torreya grandis ‘Merrillii’ nuts with different processing techniques [J]. Journal of Zhejiang A&F University, 2022, 39(1): 22 − 31.
[33] 罗凡, 郭少海, 杜孟浩, 等. 预处理条件对香榧仁油品质的影响研究[J]. 中国粮油学报, 2021, 36(4): 70 − 75.

LUO Fan, GUO Shaohai, DU Menghao, et al. The effect of pretreatment conditions on the quality of Torreya kernel oil [J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(4): 70 − 75.
[34] 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺 [J]. 化工进展, 2020, 39(增刊2): 291 − 299.

ZHANG Yuanyuan, MENG Yongbin, ZHANG Lin, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology [J]. Chemical Industry and Engineering Progress, 2020, 39(suppl 2): 291 − 299.
[35] 杨庆利, 禹山林, 秦松. 超临界CO2流体萃取海滨锦葵籽油的工艺条件优化[J]. 农业工程学报, 2009, 25(5): 253 − 257.

YANG Qingli, YU Shanlin, QIN Song. Optimization of technology for oil extraction from Kosteletzkya virginica seeds by supercritical CO2 fluid [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 253 − 257.
[36] BRUNNER G. Supercritical fluids: technology and application to food processing [J]. Journal of Food Engineering, 2005, 67(1): 21 − 33.
[37] 梁玉清, 罗金岳, 王贝贝. 超临界CO2萃取法和水蒸气蒸馏法提取香榧外种皮化学成分研究[J]. 林业科技开发, 2009, 23(5): 36 − 39.

LIANG Yuqing, LUO Jinyue, WANG Beibei. Study on the chemical constituents of the extractive from episperm of Torreya grandis by supercritical CO2 and steam distillation method [J]. China Forestry Science and Technology, 2009, 23(5): 36 − 39.
[38] 余象煜, 冯耀南, 李平, 等. 香榧(Torreya grandis Fort. ex Lindl. )种子的油脂分析[J]. 杭州大学学报(自然科学版), 1982, 27(3): 324 − 328.

YU Xiangyu, FENG Yaonan, LI Ping, et al. Analysis of oil in the seeds of Torreya grandis Fort. ex Lindl. [J]. Journal of Hangzhou University (Nature Science), 1982, 27(3): 324 − 328.
[39] 阙斐, 张星海, 赵粼. 香榧籽油的超临界萃取及其脂肪酸组成的比较分析研究[J]. 中国粮油学报, 2013, 28(2): 33 − 36.

QUE Fei, ZHANG Xinghai, ZHAO Lin. Extraction of oil from Torreya grandis cv. Merrilli seed with supercritical CO2 and comparison of its fatty acid with other four vegetable oils [J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(2): 33 − 36.
[40] 赵粼, 张星海, 虞培力. 香榧子超临界萃取物的气相色谱-质谱分析[J]. 湖北农业科学, 2013, 52(1): 186 − 188.

ZHAO Lin, ZHANG Xinghai, YU Peili. Analysis of volatile components extracted from Torreya grandis with supercritical fluid extraction by Gas Chromatography-Mass Spectrometry [J]. Hubei Agricultural Sciences, 2013, 52(1): 186 − 188.
[41] 龚莹, 彭少丹, 汪骞, 等. 乙酰辅酶A羧化酶的结构功能及基因的研究进展[J]. 安徽农业科学, 2010, 38(35): 19893 − 19896.

GONG Ying, PENG Shaodan, WANG Qian, et al. Research progress on the structure function of acetyl-CoA carboxylase and its genes [J]. Journal of Anhui Agricultural Sciences, 2010, 38(35): 19893 − 19896.
[42] 郝静芳. 拟南芥甘油-3-磷酸酰基转移酶的三个基因(GPAT 6, 7, 9)在种子油脂合成及幼苗耐盐中的作用 [D]. 南京: 南京农业大学, 2013.

HAO Jingfang. The Functions of Three Genes of Glycerol-3-Phosphate Acyltransferase (GPAT 6, 7, 9) in Regulation of the Seed-oil Content and the Salt Tolerance in Arabidopsis [D]. Nanjing: Nanjing Agricultural University, 2013.
[43] 刘聪, 肖旦望, 胡学芳, 等. 甘蓝型油菜2个GPAT6同源基因的克隆与表达分析[J]. 作物学报, 2014, 40(7): 1304 − 1310.

LIU Cong, XIAO Danwang, HU Xuefang, et al. Cloning and expression analysis of two homologous genes Codingsn-Glycerol-3-Phosphate Acyltransferase 6 in Brassica napus [J]. Acta Agronomica Sinica, 2014, 40(7): 1304 − 1310.
[44] 皮广静, 刘风珍, 万勇善, 等. 花生高油品系农大D666及其亲本油脂合成酰基转移酶基因的表达分析[J]. 分子植物育种, 2018, 16(4): 1057 − 1065.

PI Guangjing, LIU Fengzhen, WAN Yongshan, et al. Expression analysis of acyltransferase genes involved in oil biosynthesis in high-oil peanut line Nongda D666 and parents [J]. Molecular Plant Breeding, 2018, 16(4): 1057 − 1065.
[45] BOUVIER-NAVÉ P, BENVENISTE P, OELKERS P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase [J]. European Journal of Biochemistry, 2000, 267(1): 85 − 96.
[46] JAKO C, KUMAR A, WEI Y, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight [J]. Plant Physiology, 2001, 126(2): 861 − 874.
[47] 鲁庚, 唐鑫, 陆俊杏, 等. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究[J]. 作物学报, 2020, 46(8): 1283 − 1290.

LU Geng, TANG Xin, LU Junxing, et al. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283 − 1290.
[48] SAYANOVA O, HASLAM R, VENEGAS C M, et al. Cloning and characterization of unusual fatty acid desaturases from Anemone leveillei: identification of an acyl-coenzyme A C20Δ5-desaturase responsible for the synthesis of sciadonic acid [J]. Plant Physiolology, 2007, 144(1): 455 − 467.
[49] WU Jiasheng, HUANG Jiandiao, HONG Yiwei, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway [J]. Industrial Crops and Products, 2018, 120: 47 − 60.
[50] SILOTO R M P, FINDLAY K, LOPEZ-VILLALOBOS A, et al. The accumulation of oleosins determines the size of seed oilbodies in Arabidopsis [J]. The Plant Cell, 2006, 18(8): 1961 − 1974.
[51] CROWE A J, ABENES M, PLANT A, et al. The seed-specific transactivator, ABI3, induces oleosin gene expression [J]. Plant Science, 2000, 151(2): 171 − 181.
[52] PASARIBU B, CHUNG T Y, CHEN C S, et al. Identification of steroleosin in oil bodies of pine megagametophytes [J]. Plant Physiology and Biochemistry, 2016, 101: 173 − 181.
[53] BAUD S, WUILLÈME S, TO A, et al. Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis [J]. The Plant Journal, 2009, 60(6): 933 − 947.
[54] FUKUDA N, IKAWA Y, AOYAGI T, et al. Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site [J]. Plant Molecular Biology, 2013, 82(4/5): 473 − 483.
[55] QU Jing, YE Jian, GENG Yunfeng, et al. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing [J]. Plant Physiolology, 2012, 160(2): 738 − 748.
[56] LIU Jing, HUA Wei, ZHAN Gaomiao, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus [J]. Plant Physiology and Biochemistry, 2010, 48(1): 9 − 15.
[57] MAJER C, HOCHHOLDINGER F. Defining the boundaries: structure and function of LOB domain proteins [J]. Trends in Plant Science, 2011, 16(1): 47 − 52.
[58] LOU Heqiang, ZHENG Shan, CHEN Wenchao, et al. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel [J]. Journal of Advance Research, 2023, 23(1): 7 − 13.