[1] WALTHER G R, POST E, CONVEY P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416: 389−395.
[2] SETH P, SEBASTIAN J. Plants and global warming: challenges and strategies for a warming world[J/OL]. Plant Cell Reports, 2024, 43(1): 27[2024-11-01]. DOI: 10.1007/s00299-023-03083-w.
[3] 贺金生, 方精云, 马克平, 等. 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?[J]. 植物生态学报, 2003, 27(6): 835−843.

HE Jinsheng, FANG Jingyun, MA Keping, et al. Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems?[J]. Acta Phytoecologica Sinica, 2003, 27(6): 835−843.
[4] ROSAS T, MENCUCCINI M, BARBA J, et al. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient[J]. New Phytologist, 2019, 223(2): 632−646.
[5] XIE Jiangbo, WANG Zhongyuan, LI Yan. Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients[J]. New Phytologist, 2022, 235(3): 907−922.
[6] CORNWELL W K, BHASKAR R, SACK L, et al. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation[J]. Functional Ecology, 2007, 21(6): 1063−1071.
[7] LENS F, SPERRY J S, CHRISTMAN M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer[J]. New Phytologist, 2011, 190(3): 709−723.
[8] MESSIER J, LECHOWICZ M J, MCGILL B J, et al. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network[J]. Journal of Ecology, 2017, 105(6): 1775−1790.
[9] 唐宸宇, 张博纳, 汤璐瑶, 等. 降水梯度带共有种银白杨适应策略的区域分异规律[J]. 西北植物学报, 2024, 44(11): 1789−1800.

TANG Chenyu, ZHANG Bona, TANG Luyao, et al. Regional differentiation of adaptive strategies of common species Populus alba in precipitation gradient zone[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(11): 1789−1800.
[10] 郭美妙, 张博纳, 汤璐瑶, 等. 降水梯度带共有种旱柳功能性状的区域分异规律[J]. 浙江农林大学学报, 2025, 42(2): 281−290.

GUO Meimiao, ZHANG Bona, TANG Luyao, et al. Regional differentiation patterns of common functional traitsof Salix matsudana in precipitation gradient zones[J]. Journal of Zhejiang A&F University, 2025, 42(2): 281−290.
[11] LU Huimin, SUN Meng, MA Yuandan, et al. Contrasting patterns of variation in foliar pH between a woody species and an herbaceous species along a 3300 km water availability gradient in China[J/OL]. CATENA, 2022, 216: 106408[2024-11-01]. DOI: 10.1016/j.catena.2022.106408.
[12] DENG Lei, YAN Weiming, ZHANG Yongwang, et al. Severe depletion of soil moisture following land-use changes for ecological restoration: evidence from northern China[J]. Forest Ecology and Management, 2016, 366: 1−10.
[13] 刘颖, 李国庆, 杜盛. 西北地区成过熟人工林质量衰退状况、原因与对策[J]. 陆地生态系统与保护学报, 2022, 2(5): 55−61.

LIU Ying, LI Guoqing, DU Sheng. The status, causes, and countermeasures for quality degradation of mature and over-mature plantations in northwest China[J]. Terrestrial Ecosystem and Conservation, 2022, 2(5): 55−61.
[14] 李敏敏, 魏天兴, 李信良, 等. 黄土区蔡家川流域刺槐人工林林下物种多样性[J]. 浙江农林大学学报, 2018, 35(2): 227−234.

LI Minmin, WEI Tianxing, LI Xinliang, et al. Species diversity in the understory of a Robinia pseudoacacia plantation in the Caijiachuan Watershed of the Loess Plateau[J]. Journal of Zhejiang A&F University, 2018, 35(2): 227−234.
[15] ZHAO Wanli, CHEN Yajun, BRODRIBB T J, et al. Weak co-ordination between vein and stomatal densities in 105 angiosperm tree species along altitudinal gradients in Southwest China[J]. Functional Plant Biology, 2016, 43(12): 1126−1133.
[16] WHITE F M. Viscous Fluid Flow[M]. New York: McGraw-Hill, 1991: 234−240.
[17] TYREE M T, ZIMMERMANN M H. Xylem Structure and the Ascent of Sap[M]. 2nd ed. Berlin: Springer-Verlag, 2002: 76−80.
[18] 刘尧, 于馨, 于洋, 等. R程序包“rdacca. hp”在生态学数据分析中的应用: 案例与进展[J]. 植物生态学报, 2023, 47(1): 134−144.

LIU Yao, YU Xin, YU Yang, et al. Application of “rdacca. hp” R package in ecological data analysis: case and progress[J]. Chinese Journal of Plant Ecology, 2023, 47(1): 134−144.
[19] 方菁, 叶琳峰, 陈森, 等. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650−658.

FANG Jing, YE Linfeng, CHEN Sen, et al. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats[J]. Chinese Journal of Plant Ecology, 2021, 45(6): 650−658.
[20] GONG Xuewei, GUO Jingjing, FANG Lidong, et al. Hydraulic dysfunction due to root-exposure-initiated water stress is responsible for the mortality of Salix gordejevii shrubs on the windward slopes of active sand dunes[J]. Plant and Soil, 2021, 459(1): 185−201.
[21] PANDEY S. Climatic influence on tree wood anatomy: a review[J/OL]. Journal of Wood Science, 2021, 67(1): 24[2024-11-01]. DOI:10.1186/s10086-021-01956-w.
[22] 上官方京, 赵明水, 张博纳, 等. 亚热带植物水力性状与木质部解剖结构的关系[J]. 浙江农林大学学报, 2022, 39(2): 252−261.

SHANGGUAN Fangjing, ZHAO Mingshui, ZHANG Bona, et al. Relationship between hydraulic properties and xylem anatomical structure of subtropical plants[J]. Journal of Zhejiang A&F University, 2022, 39(2): 252−261.
[23] 陈森, 陆世通, 李彦, 等. 杉科植物枝/根木质部水分运输功能、机械强度与解剖结构的关系[J]. 浙江农林大学学报, 2022, 39(2): 233−243.

CHEN Sen, LU Shitong, LI Yan, et al. Relationships among water transport, mechanical strength and anatomical structure in branch and root xylem of Taxodiaceae species[J]. Journal of Zhejiang A&F University, 2022, 39(2): 233−243.
[24] FRANKS P J, DRAKE P L, BEERLING D J. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus[J]. Plant, Cell & Environment, 2009, 32(12): 1737−1748.
[25] SHEN Hui, ZHANG Jing, PENG Lan, et al. Spatial patterns and climatic factors influence the branch xylem anatomical traits of Reaumuria soongarica in the desert region of northwestern China[J/OL]. Environmental and Experimental Botany, 2023, 210: 105338[2024-11-01]. DOI: 10.1016/j.envexpbot.2023.105338.
[26] 党维, 姜在民, 李荣, 等. 6个树种1年生枝木质部的水力特征及与栓塞修复能力的关系[J]. 林业科学, 2017, 53(3): 49−59.

DANG Wei, JIANG Zaimin, LI Rong, et al. Relationship between hydraulic traits and refilling of embolism in the xylem of one-year-old twigs of six tree species[J]. Scientia Silvae Sinicae, 2017, 53(3): 49−59.
[27] LIU Congcong, SACK L, LI Ying, et al. Relationships of stomatal morphology to the environment across plant communities[J/OL]. Nature Communications, 2023, 14(1): 6629[2024-11-01]. DOI: 10.1038/s41467-023-42136-2.
[28] MENCUCCINI M, ROSAS T, ROWLAND L, et al. Leaf economics and plant hydraulics drive leaf: wood area ratios[J]. New Phytologist, 2019, 224(4): 1544−1556.
[29] LAWSON T, MATTHEWS J. Guard cell metabolism and stomatal function[J]. Annual Review of Plant Biology, 2020, 71: 273−302.
[30] LENS F, GLEASON S M, BORTOLAMI G, et al. Functional xylem characteristics associated with drought-induced embolism in angiosperms[J]. New Phytologist, 2022, 236(6): 2019−2036.
[31] DEANS R M, BRODRIBB T J, BUSCH F A, et al. Optimization can provide the fundamental link between leaf photosynthesis, gas exchange and water relations[J]. Nature Plants, 2020, 6(9): 1116−1125.
[32] HACKE U G, JACOBSEN A L, PRATT R B. Vessel diameter and vulnerability to drought-induced embolism: within-tissue and across-species patterns and the issue of survivorship bias[J]. IAWA Journal, 2023, 44(3/4): 304−319.
[33] XU Huiying, WANG Han, PRENTICE I C, et al. Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements[J]. New Phytologist, 2021, 232(3): 1286−1296.
[34] JOSHI J, STOCKER B D, HOFHANSL F, et al. Towards a unified theory of plant photosynthesis and hydraulics[J]. Nature Plants, 2022, 8(11): 1304−1316.
[35] SACK L, TYREE M T, HOLBROOK N M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees[J]. New Phytologist, 2005, 167(2): 403−413.
[36] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317−345.
[37] HETHERINGTON A M, IAN WOODWARD F. The role of stomata in sensing and driving environmental change[J]. Nature, 2003, 424(6951): 901−908.
[38] ZHANG Zhenjiao, WANG Xing, GUO Shujuan, et al. Divergent patterns and drivers of leaf functional traits of Robinia pseudoacacia and Pinus tabulaeformis plantations along a precipitation gradient in the Loess plateau, China[J/OL]. Journal of Environmental Management, 2023, 348: 119318[2024-11-01]. DOI: 10.1016/j.jenvman.2023.119318.
[39] MORRIS H, GILLINGHAM M A F, PLAVCOVÁ L, et al. Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms[J]. Plant, Cell & Environment, 2018, 41(1): 245−260.
[40] GLEASON S M, BUTLER D W, WARYSZAK P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia[J]. International Journal of Plant Sciences, 2013, 174(9): 1292−1301.