[1] 孙雪娇, 常顺利, 宋成程, 等. 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化[J]. 生态学杂志, 2018, 37(5): 1291 − 1298.

SUN Xuejiao, CHANG Shunli, SONG Chengcheng, et al. Age-related N, P, and K stoichiometry in different organs of Picea schrenkiana [J]. Chin J Ecol, 2018, 37(5): 1291 − 1298.
[2] 牛得草, 李茜, 江世高, 等. 阿拉善荒漠区6种主要灌木植物叶片C∶N∶P化学计量比的季节变化[J]. 植物生态学报, 2013, 37(4): 317 − 325.

NIU Decao, LI Qian, JIANG Shigao, et al. Seasonal variations of leaf C∶N∶P stoichiometry of six shrubs in desert of China’s Alxa Plateau [J]. Chin J Plant Ecol, 2013, 37(4): 317 − 325.
[3] 周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7 − 16.

ZHOU Peng, GENG Yan, MA Wenhong, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Chin J Plant Ecol, 2010, 34(1): 7 − 16.
[4] 李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化[J]. 生态学报, 2016, 36(20): 6547 − 6555.

LI Honglin, GONG Lu, HONG Yi. Seasonal variations in C, N, and P stoichiometry of roots, stems, and leaves of Phragmites australis in the Keriya Oasis, Xinjiang, China [J]. Acta Ecol Sin, 2016, 36(20): 6547 − 6555.
[5] 李月芬, 王冬艳, LASOUKANH V, 等. 基于土壤化学性质与神经网络的羊草碳氮磷含量预测[J]. 农业工程学报, 2014, 30(3): 104 − 111.

LI Yuefen, WANG Dongyan, LASOUKANH V, et al. Prediction of carbon, nitrogen and phosphorus contents of Leymus chinensis based on soil chemical properties using artificial neural networks [J]. Trans Chin Soc Agric Eng, 2014, 30(3): 104 − 111.
[6] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013, 33(18): 5484 − 5492.

ZENG Dongping, JIANG Liling, ZENG Congsheng, et al. Reviews on the ecological stoichiometry characteristics and its applications [J]. Acta Ecol Sin, 2013, 33(18): 5484 − 5492.
[7] AGREN G I, WEIH M. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype [J]. New Phytol, 2012, 194(4): 944 − 952.
[8] 赵明水, 张华峰. 天目铁木物理力学性质初步分析[J]. 浙江林业科技, 2006, 26(1): 52 − 55.

ZHAO Mingshui, ZHANG Huafeng. Analysis on physical mechanics property of Ostrya rehderiana wood [J]. J Zhejiang For Sci Technol, 2006, 26(1): 52 − 55.
[9] 吴世斌, 库伟鹏, 周小荣, 等. 浙江省极小种群多脉铁木年龄结构与动态[J]. 浙江农业科学, 2018, 59(8): 1381 − 1384.

WU Shibin, KU Weipeng, ZHOU Xiaorong, et al. Age structure and dynamics of extremely small populations of Ostrya multinervis in Zhejiang Province [J]. J Zhejiang Agric Sci, 2018, 59(8): 1381 − 1384.
[10] 张若蕙, 龚关文, 沈锡康, 等. 天目铁木花粉、种子及幼苗的研究[J]. 浙江林业科技, 1988, 8(4): 7 − 11, 30.

ZHANG Ruohui, GONG Guanwen, SHEN Xikang, et al. A study of pollen, seed and seedling of Ostrya rehderiana Chun [J]. J Zhejiang For Sci Technol, 1988, 8(4): 7 − 11, 30.
[11] 王祖良, 陆海根, 黄珊珊, 等. 天目铁木雄花序内源多胺的HPLC分析及其动态变化[J]. 安徽农业大学学报, 2012, 39(1): 79 − 83.

WANG Zuliang, LU Haigen, HUANG Shanshan, et al. Dynamic changes of endogenous polyamines in male anthotaxy of Ostrya rehderiana by HPLC [J]. J Anhui Agric Univ, 2012, 39(1): 79 − 83.
[12] 管康林, 陶银周. 濒危树种天目铁木的现状和繁殖[J]. 浙江林学院学报, 1988, 5(1): 90 − 92.

GUAN Kanglin, TAO Yinzhou. Current situation and propagation of rare tree species: Ostrya rederiana [J]. J Zhejiang For Coll, 1988, 5(1): 90 − 92.
[13] 乐笑玮, 崔敏燕, 杨淑贞, 等. 濒危植物天目铁木种子休眠及萌发特征研究[J]. 华东师范大学学报(自然科学版), 2013(6): 150 − 158.

LE Xiaowei, CUI Minyan, YANG Shuzhen, et al. Characters on the seed dormancy and germination of an endangered species, Ostrya rehderiana, in Tianmu Mountain, China [J]. J East China Norm Univ Nat Sci, 2013(6): 150 − 158.
[14] 孟爱平, 何子灿, 李建强, 等. 桦木科2种濒危植物的染色体数目[J]. 武汉植物学研究, 2004, 22(2): 171 − 173.

MENG Aiping, HE Zican, LI Jianqiang, et al. Chromosome numbers of two threatened species of Betulaceae [J]. J Wuhan Bot Res, 2004, 22(2): 171 − 173.
[15] 王祖良, 丁丽霞, 赵明水, 等. 濒危植物天目铁木遗传多样性的RAPD分析[J]. 浙江林学院学报, 2008, 25(3): 304 − 308.

WANG Zuliang, DING Lixia, ZHAO Mingshui, et al. Genetic diversity of Ostrya rehderiana revealed by RAPD markers [J]. J Zhejiang For Coll, 2008, 25(3): 304 − 308.
[16] 顾地周, 陆爽, 巴春影, 等. 天目铁木愈伤组织和芽苗诱导技术[J]. 浙江大学学报(理学版), 2013, 40(2): 216 − 220.

GU Dizhou, LU Shuang, BA Chunying, et al. Technique of callus induction and bud seedling of Ostrya rehderiana Chun [J]. J Zhejiang Univ Sci Ed, 2013, 40(2): 216 − 220.
[17] 王晓燕, 杨淑贞, 赵明水, 等. 濒危植物天目铁木和羊角槭的光合及蒸腾特性日动态比较[J]. 华东师范大学学报(自然科学版), 2015(2): 113 − 121.

WANG Xiaoyan, YANG Shuzhen, ZHAO Mingshui, et al. Comparative diurnal variations in photosynthesis and transpiration ofendangered plant species, Ostrya rehderiana and Acer yangjuechi [J]. J East China Norm Univ Nat Sci, 2015(2): 113 − 121.
[18] 罗远, 吴世斌, 库伟鹏, 等. 珍稀濒危植物天目铁木群落结构及物种多样性[J]. 浙江农业科学, 2018, 59(11): 2061 − 2064.

LUO Yuan, WU Shibin, KU Weipeng, et al. Community structure characteristics and species diversity of rare and endangered plants of Ostrya rehderiana [J]. J Zhejiang Agric Sci, 2018, 59(11): 2061 − 2064.
[19] 《石垟林场志》编篡委员会. 石垟林场志[M]. 北京: 北京艺术与科学电子出版社, 2012.
[20] 吴世斌, 库伟鹏, 周小荣, 等. 浙江文成珍稀植物多脉铁木群落结构及物种多样性[J]. 浙江农林大学学报, 2019, 36(1): 31 − 37.

WU Shibin, KU Weipeng, ZHOU Xiaorong, et al. Structural characteristics and species diversity for survival of the rare plant Ostrya multinervis [J]. J Zhejiang A&F Univ, 2019, 36(1): 31 − 37.
[21] 叶柳欣, 张勇, 蒋仲龙, 等. 不 同林龄杨梅叶片与土壤的碳、氮、磷生态化学计量特征[J]. 安徽农业大学学报, 2019, 46(3): 454 − 459.

YE Liuxin, ZHANG Yong, JIANG Zhonglong, et al. The stoichiometic characteristics of carbon, nitrogen and phosphorus in soil and leaves of different ages of Myrica rubra [J]. J Anhui Agric Univ, 2019, 46(3): 454 − 459.
[22] 王增, 蒋仲龙, 刘海英, 等. 油茶不同器官氮、磷、钾化学计量特征随年龄的变化[J]. 浙江农林大学学报, 2019, 36(2): 264 − 270.

WANG Zeng, JIANG Zhonglong, LIU Haiying, et al. Ecological stoichiometry of N, P, and K with age in Camellia oleifera organs [J]. J Zhejiang A&F Univ, 2019, 36(2): 264 − 270.
[23] 吴家森, 张勇, 吕爱华, 等. 不同林龄油茶叶片与土壤的碳氮磷生态化学计量特征研究[J]. 西南林业大学学报(自然科学), 2019, 39(3): 86 − 92.

WU Jiasen, ZHANG YONG, LÜ Aihua, et al. Eco-stoichiometric characteristics of carbon, nitrogen and phosphorusin leaves and soil of Camellia oleifera at different ages [J]. J Southwest For Univ Nat Sci, 2019, 39(3): 86 − 92.
[24] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665 − 2673.

REN Shujie, YU Guirui, TAO Bo, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC [J]. Environ Sci, 2007, 28(12): 2665 − 2673.
[25] 秦海, 李俊祥, 高三平, 等. 中国660种陆生植物叶片8种元素含量特征[J]. 生态学报, 2010, 30(5): 1247 − 1257.

QIN Hai, LI Junxiang, GAO Sanping, et al. Characteristics of leaf element contents for eight nutrients across 660 terrestrial plant species in China [J]. Acta Ecol Sin, 2010, 30(5): 1247 − 1257.
[26] 郭素娟, 谢明明, 张丽, 等. 板栗细根碳、氮、磷化学计量时间变异特征[J]. 植物营养与肥料学报, 2018, 24(3): 825 − 832.

GUO Sujuan, XIE Mingming, ZHANG Li, et al. Temporal variation of C, N, P stoichiometric in fine roots of Castanea mollissima [J]. J Plant Nutr Fert, 2018, 24(3): 825 − 832.
[27] 皮发剑, 袁丛军, 喻理飞, 等. 黔中天然次生林主要优势树种叶片生态化学计量特征[J]. 生态环境学报, 2016, 25(5): 801 − 807.

PI Fajian, YUAN Congjun, YU Lifei, et al. Ecological stoichiometry characteristics of plant leaves from the maindominant species of natural secondary forest in the central of Guizhou [J]. Ecol Environ Sci, 2016, 25(5): 801 − 807.
[28] 姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabulaeformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19): 6188 − 6197.

JIANG Peipei, CAO Yang, CHEN Yunming, et al. Variation of C, N, and P stoichiometry in plant tissue, litter, and soil during stand development in Pinus tabulaeformis plantation [J]. Acta Ecol Sin, 2016, 36(19): 6188 − 6197.
[29] VENTERINK H G M O, WASSEN M J, VERKROOST A W M, et al. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands [J]. Ecology, 2003, 84(8): 2191 − 2199.
[30] 吴家森, 蒋仲龙, 吕爱华, 等. 不同年龄杨梅各器官氮、磷、钾化学计量特征[J]. 江西农业大学学报, 2019, 41(3): 447 − 453.

WU Jiasen, JIANG Zhonglong, LÜ Aihua, et al. The ecological stoichiometry of N, P and K in organs of Myrica rubra of different ages [J]. Acta Agric Univ Jiangxi, 2019, 41(3): 447 − 453.
[31] KOCRSCLMAN W, MEULEMAN AF M. The vegetation N∶P ratio: anew tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 1996, 33(6): 1441 − 1450.
[32] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821 − 827.
[33] ZHANG Sheng, ZHOU Rong, ZHAO Hongxia, et al. iTRAQ-based quantitative proteomic analysis gives insight into sexually different metabolic processes of poplars under nitrogen and phosphorus deficiencies [J]. Proteomics, 2016, 16(4): 614 − 628.