[1] LIU Yuli, ZHOU Guomo, DU Huaqiang, et al. Soil respiration of a moso bamboo forest significantly affected by gross ecosystem productivity and leaf area index in an extreme drought event [J/OL]. PeerJ, 2018, 6: e5747[2024-02-20]. doi: 10.7717/peerj.5747.
[2] RAMAKRISHNAN M, YRJÄLÄ K, VINOD K K, et al. Genetics and genomics of moso bamboo (Phyllostachys edulis): current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry [J/OL]. Food and Energy Security, 2020, 9(4): e229[2024-02-20]. doi: 10.1002/fes3.229.
[3] ZHAO Hansheng, GAO Zhimin, WANG Le, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis) [J/OL]. GigaScience, 2018, 7(10): giy115[2024-02-20]. doi: 10.1093/gigascience/giy115.
[4] BOURQUE G, BURNS K H, GEHRING M, et al. Ten things you should know about transposable elements [J/OL]. Genome Biology, 2018, 19: 199[2024-02-20]. doi: 10.1186/s13059-018-1577-z.
[5] RAMAKRISHNAN M, PAPOLU P K, MULLASSERI S, et al. The role of LTR retro transposons in plant genetic engineering: how to control their transposition in the genome [J]. Plant Cell Reports, 2023, 42(1): 3 − 15.
[6] LIU Beibei, Zhao Meixia. How transposable elements are recognized and epigenetically silenced in plants? [J/OL]. Current Opinion in Plant Biology, 2023, 75: 102428[2024-02-20]. doi: 10.1016/j.pbi.2023.102428.
[7] RAMAKRISHNAN M, SATISH L, KALENDAR R, et al. The dynamism of transposon methylation for plant development and stress adaptation [J/OL]. International Journal of Molecular Sciences, 2021, 22(21): 11387[2024-02-20]. doi: 10.3390/ijms222111387.
[8] NAITO K, FENG Zhang, TSUKIYAMA T, et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression [J]. Nature, 2009, 461(7267): 1130 − 1134.
[9] ZHOU Mingbing, ZHU Yihang, BAI Youhuang, et al. Transcriptionally active LTR retroelement-related sequences and their relationship with small RNA in moso bamboo (Phyllostachys edulis) [J/OL]. Molecular Breeding, 2017, 37(10): 132[2024-02-20]. doi: 10.1007/s11032-017-0733-6.
[10] SUONIEMI A, NARVANTO A, SCHULMAN A H. The BARE-1 retrotransposon is transcribed in barley from an LTR promoter active in transient assays [J]. Plant Molecular Biology, 1996, 31(2): 295 − 306.
[11] CABILI M N, TRAPNELL C, GOFF L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses [J]. Genes &Development, 2011, 25(18): 1915 − 1942.
[12] WASHIETL S, KELLIS M, GARBER M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals [J]. Genome Research, 2014, 24(4): 616 − 628.
[13] KONDO T, PLAZA S, ZANET J, et al. Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis [J]. Science, 2010, 329(5989): 336 − 339.
[14] SALIH H, GONG Wengfang, HE Shoupu, et al. Comparative transcriptome analysis of TUCPs in Gossypium hirsutum ligon-lintless-1 mutant and their proposed functions in cotton fiber development [J]. Molecular Genetics and Genomics, 2019, 294(1): 23 − 34.
[15] XIAO Ke, YANG Yuemei, BIAN Yanyan, et al. Identification of differentially expressed long noncoding RNAs in human knee osteoarthritis [J]. Journal of Cellular Biochemistry, 2019, 120(3): 4620 − 4633.
[16] LUO Honglin, YANG Huizan, LIN Yong, et al. LncRNA and mRNA profiling during activation of tilapia macrophages by HSP70 and antigen [J]. Oncotarget, 2017, 8(58): 98455 − 98470.
[17] LIU Yong, QI Bing, XIE Juan, et al. Filtered reproductive long non-coding RNAs by genome-wide analyses of goat ovary at different estrus periods [J]. BMC Genomics, 2018, 19(1): 866[2024-02-20]. doi:10.1186/s12864-018-5268-7.
[18] LIU Huimin, LU Yan, WANG Juan, et al. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis [J]. Journal of Integrative Plant Biology, 2018, 60(11): 1070 − 1082.
[19] WANG Dong, QU Zhipeng, YANG Lan, et al. Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants [J]. Plant Journal, 2017, 90(1): 133 − 146.
[20] HAO Qin, YANG Lei, FAN Dingyu, et al. The transcriptomic response to heat stress of a jujube (Ziziphus jujuba Mill. ) cultivar is featured with changed expression of long noncoding RNAs [J/OL]. PLoS One, 2021, 16(5): e0249663[2024-02-20]. doi: 10.1371/journal.pone.0249663.
[21] DING Yiqian, ZOU Longhai, WU Jiajun, et al. The pattern of DNA methylation alteration, and its association with the expression changes of non-coding RNAs and mRNAs in moso bamboo under abiotic stress [J/OL]. Plant Science, 2022, 325: 111451[2024-02-20]. doi: 10.1016/j.plantsci.2022.111451.
[22] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114 − 2134.
[23] KIM D, PAGGI J M, PARK C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype [J]. Nature Biotechnology, 2019, 37(8): 907 − 915.
[24] LIAO Yang, SMYTH G K, SHI Wei. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features [J]. Bioinformatics, 2014, 30(7): 923 − 930.
[25] LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J/OL]. Genome Biology, 2014, 15: 550[2024-02-20]. doi: 10.1186/s13059-014-0550-8.
[26] TRAPNELL C, ROBERTS A, GOFF L, et al. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks [J]. Nature Protocols, 2012, 7(3): 562 − 578.
[27] SUN Liang, LUO Haitao, BU Dechao, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts [J/OL]. Nucleic Acids Research, 2013, 41(17): e166[2024-02-20]. doi: 10.1093/nar/gkt646.
[28] MISTRY J, BATEMAN A, FINN R D. Predicting active site residue annotations in the Pfam database [J/OL]. BMC Bioinformatics, 2007, 8: 298[2024-02-20]. doi:10.1186/1471-2105-8-298.
[29] KANG Yujian, YANG Dechang, KONG Lei, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features [J]. Nucleic Acids Research, 2017, 45(W1): W12 − W16.
[30] ZHOU Mingbing, TAO Guiyun, PI Peiyao, et al. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla) [J]. Planta, 2016, 244(4): 775 − 787.
[31] CHEN Nansheng. Using RepeatMasker to identify repetitive elements in genomic sequences [J]. Current Protocols in Bioinformatics, 2004, 5(1): 4 − 10.
[32] QUINLAN A R, HALL I M. BEDTools: a flexible suite of utilities for comparing genomic features [J]. Bioinformatics, 2010, 26(6): 841 − 842.
[33] PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-Seq reads [J]. Nature Biotechnology, 2015, 33(3): 290 − 295.
[34] PERTEA G, PERTEA M. GFF Utilities: GffRead and GffCompare [J/OL]. F1000Research, 2020, 9: 304[2024-02-20]. doi: 10.12688/f1000research.23297.2.
[35] SONESON C, LOVE M I, ROBINSON M D. Differential analyses for RNA-Seq: transcript-level estimates improve gene-level inferences [J/OL]. F1000Research, 2015, 4: 1521[2024-02-20]. doi: 10.12688/f1000research.7563.2.
[36] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods, 2001, 25(4): 402 − 408.
[37] 陈娅欣, 周明兵. 毛竹长末端重复序列反转录转座子的全基因组特征及进化分析[J]. 浙江农林大学学报, 2021, 38(3): 455 − 463.

CHEN Yaxin, ZHOU Mingbing. Genome-wide characteristics and evolution analysis of long terminal repeat retrotransposons in Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(3): 455 − 463.
[38] XIN Youchao, MA Bi, XIANG Zhonghua, et al. Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry (Morus notabilis) [J/OL]. Mobile DNA, 2019, 10: 27[2024-02-20]. doi: 10.1186/s13100-019-0169-0.
[39] XU Ling, ZHANG Yu, SU Yuan, et al. Structure and evolution of full-length LTR retrotransposons in rice genome [J]. Plant Systematics and Evolution, 2010, 287(1/2): 19 − 28.
[40] PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses [J]. Nature, 2009, 457(7229): 551 − 556.
[41] WANG Hao, XU Zhao, YU Hongjie. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice [J/OL]. BMC Genomics, 2008, 9(1): 565[2024-02-20]. doi: 10.1186/1471-2164-9-565.
[42] SALLAM N, MOUSSA M. DNA methylation changes stimulated by drought stress in ABA-deficient maize mutant [J]. Plant Physiology and Biochemistry, 2021, 160: 218 − 224.
[43] BENOIT M, DROST H G, CATONI M, et al. Environmental and epigenetic regulation of retrotransposons in tomato [J/OL]. PLoS Genetics, 2019, 15(9): e1008370[2024-02-20]. doi: 10.1371/journal.pgen.1008370.
[44] CASACUBERTA E, GONZÁLEZ J. The impact of transposable elements in environmental adaptation [J]. Molecular Ecology, 2013, 22(6): 1503 − 1517.