[1] |
SUZUKI H, OSAWA T, FUJIOKA Y, et al. Structural biology of the core autophagy machinery[J]. Curr Opin Struct Biol, 2017, 43:10-17. |
[2] |
THOMPSON A R, DOELLING J H, SUTTNGKAKUL A. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways[J]. Plant Physiol, 2005, 138(4):2097-2110. |
[3] |
TOYOOKA K, MORIYASU Y, GOTO Y, et al. Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells[J]. Autophagy, 2006, 2(2):96-106. |
[4] |
HOFIUS D, SCHULTZ-LARSEN T, JOENSEN J, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis[J]. Cell, 2009, 137(4):773-783. |
[5] |
LI Faqiang, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. Plant Cell, 2015, 27(5):1389-1408. |
[6] |
LI W W, CHEN M, LIU J M, et al. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setariaitalica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis[J]. Biochem Biophys Res Commun, 2015, 468(4):800-806. |
[7] |
AVIN-WITTENBERG T, BAJDZIENKO K, WITTENBERG G, et al. Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation[J]. Plant Cell, 2015, 27(2):306-322. |
[8] |
BARROS J A S, CAVALCANTI J H, MEDEIROS D B, et al. Autophagy deficiency compromises alternative pathways of respiration following energy deprivation in Arabidopsis thaliana[J]. Plant Physiol, 2017, 175(1):62-76. |
[9] |
GUIBOILEAU A, OSPINA L A, YOSHIMOTO K, et al. Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability[J]. New Phytol, 2013, 199(3):683-694. |
[10] |
MARSHALL R S, VIERSTRA R D. Autophagy:the master of bulk and selective recycling[J]. Ann Rev Plant Biol, 2018, 69(1):173-208. |
[11] |
INOUE Y, SUZUKI T, HATTORI M, et al. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells[J]. Plant Cell Physiol, 2006, 47(12):1641-1652. |
[12] |
YANO K, SUZUKI T, MORIYASU Y. Constitutive autophagy in plant root cells[J]. Autophagy, 2007, 3(4):360-362. |
[13] |
KURUSU T, KOYANO T, HANAMATA S, et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development[J]. Autophagy, 2014, 10(5):878-888. |
[14] |
KWON S I, CHO H J, JUNG J H, et al. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis[J]. Plant J, 2010, 64(1):151-164. |
[15] |
WANG Yan, YU Bingjie, ZHAO Jinping, et al. Autophagy contributes to leaf starch degradation[J]. Plant Cell, 2013, 25(4):1383-1399. |
[16] |
ISHIDA H, YOSHIMOTO K, IZUMI M, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process[J]. Plant Physiol, 2008, 148(1):142-155. |
[17] |
WADA S, ISHIDA H, IZUMI M, et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves[J]. Plant Physiol, 2009, 149(2):885-893. |
[18] |
IZUMI M, WADA S, MAKINO A, et al. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis[J]. Plant Physiol, 2010, 154(3):1196-1209. |
[19] |
IZUMI M, HIDEMA J, WADA S. et al. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation[J]. Plant Physiol, 2015, 167(4):1307-1320. |
[20] |
IZUMI M, HIDEMA J, MAKINO A, et al. Autophagy contributes to nighttime energy availability for growth in Arabidopsis[J]. Plant Physiol, 2013, 161(4):1682-1693. |
[21] |
GHIGLIONE H O, GONZALEZ F G, SERRAGO R, et al. Autophagy regulated by day length determines the number of fertile florets in wheat[J]. Plant J, 2008, 55(6):1010-1024. |
[22] |
TOYOOKA K, OKAMOTO T, MINAMIKAWA T. Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components[J]. Cell Biol, 2001, 154(5):973-982. |
[23] |
YOSHIMOTO K, TAKANO Y, SAKAI Y. Autophagy in plants and phytopathogens[J]. FEBS Lett, 2010, 584(7):1350-1358. |
[24] |
陈登举, 高培军, 吴兴波, 等.毛竹茎秆叶绿体超微结构及其发射荧光光谱特征[J].植物学报, 2013, 48(6):635-642.
CHEN Dengju, GAO Peijun, WU Xingbo, et al. Chloroplast ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys edulis[J]. Chin Bull Bot, 2013, 48(6):635-642. |
[25] |
刘琳, 王玉魁, 王星星, 等.毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J].生态学报, 2013, 33(9):2703-2711.
LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys edulis stems during its rapid growth stage[J]. Acta Ecol Sin, 2013, 33(9):2703-2711. |
[26] |
王星星, 刘琳, 张洁, 等.毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J].植物生态学报, 2012, 36(5):456-462.
WANG Xingxing, LIU Lin, ZHANG Jie, et al. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting[J]. Chin J Plant Ecol, 2012, 36(5):456-462. |
[27] |
孙建飞, 翟建云, 马元丹, 等.毛竹快速生长期茎秆不同节间光合色素和光合酶活性的差异[J].植物学报, 2018, 53(6):773-781.
SUN Jianfei, ZHAI Jianyun, MA Yuandan, et al. Differences in photosynthetic pigments and photosynthetic enzyme activities in different internodes of Phyllostachys edulis during rapid growth stage[J]. Chin Bull Bot, 2018, 53(6):773-781. |
[28] |
程路芸, 温星, 马丹丹, 等.毛竹快速生长过程中碳水化合物的时空变化[J].浙江农林大学学报, 2017, 34(2):261-267.
CHENG Luyun, WEN Xing, MA Dandan, et al. Spatial and temporal change of carbohydrates during rapid growthprocesses of Phyllostachys edulis[J]. J Zhejiang A&F Univ, 2017, 34(2):261-267. |
[29] |
李丹丹, 许馨露, 翟建云, 等.毛竹笋竹快速生长期可溶性糖质量分数与PeTPS1/PeSnRK1基因表达分析[J].浙江农林大学学报, 2017, 34(6):1016-1023.
LI Dandan, XU Xinlu, ZHAI Jianyun, et al. Soluble sugar content and PeTPS1/PeSnRK1 gene expression in Phyllostachys edulis during rapid growth[J]. J Zhejiang A&F Univ, 2017, 34(6):1016-1023. |
[30] |
翟建云, 孙建飞, 马元丹, 等.毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J].竹子学报, 2018, 37(1):42-48.
ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in differentinternodes of Phyllostachys edulis during rapid growth period[J]. J Bamboo Res, 2018, 37(1):42-48. |
[31] |
CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. J Proteome Res, 2012, 11(4):2492-2507. |
[32] |
ZHOU Mingbing, YANG Ping, GAO Peijun, et al. Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization[J]. Plant Mol Biol Rep, 2011, 29(1):224-231. |
[33] |
PENG Zhenhua, LU Ying, LI Lubing, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Gen, 2013, 45(4):456-461. |
[34] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4):402-408. |
[35] |
任晨霞, 龚清秋.细胞自噬在植物碳氮营养中作用的研究进展[J].中国细胞生物学学报, 2014, 36(4):407-414.
REN Chenxia, GONG Qingqiu. Progress on the involvement of plant autophagy incarbon and nitrogen utilization[J]. Chin J Cell Biol, 2014, 36(4):407-414. |
[36] |
HAN Shaojie, WANG Yan, ZHENG Xiyin, et al. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana[J]. Plant Cell, 2015, 27(4):1316-1331. |
[37] |
刘洋, 张静, 王秋玲, 等.植物细胞自噬研究进展[J].植物学报, 2018, 53(1):5-16.
LIU Yang, ZHANG Jing, WANG Qiuling, et al. Research progress in plant autophagy[J]. Chin Bull Bot, 2018, 53(1):5-16. |
[38] |
KIRISAKO T, ICHIMURA Y, OKADA H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. J Cell Biol, 2000, 151(2):263-276. |
[39] |
祝巧鸣, 娄帅通, 杨勇, 等.毛竹茎秆快速生长相关基因PeHSD1的功能探究[J].分子植物育种, 2018, 16(19):6269-6275.
ZHU Qiaoming, LOU Shuaitong, YANG Yong, at al. The preliminary functional study of bamboo culm rapid growth related gene PeHSD1[J]. Mol Plant Breeding, 2018, 16(19):6269-6275. |
[40] |
叶家其, 张毓婷, 傅鹰, 等.毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析[J].生物工程学报, 2019, 35(6):1-20.
YE Jiaqi, ZHANG Yuting, FU Ying, et al. Genome-wide identification and expression analysis of gibberellin biosynthesis, metabolism and signaling familygenes in Phyllostachys edulis[J]. Chin J Biotechnol, 2019, 35(6):1-20. |