[1] SUZUKI H, OSAWA T, FUJIOKA Y, et al. Structural biology of the core autophagy machinery[J]. Curr Opin Struct Biol, 2017, 43:10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0ae69e4f8b8b04a05f3cdf23d9c47599
[2] THOMPSON A R, DOELLING J H, SUTTNGKAKUL A. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways[J]. Plant Physiol, 2005, 138(4):2097-2110. doi:  10.1104-pp.105.060673/
[3] TOYOOKA K, MORIYASU Y, GOTO Y, et al. Protein aggregates are transported to vacuoles by macroautophagic mechanism in nutrient-starved plant cells[J]. Autophagy, 2006, 2(2):96-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4161/auto.2.2.2366
[4] HOFIUS D, SCHULTZ-LARSEN T, JOENSEN J, et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis[J]. Cell, 2009, 137(4):773-783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=01b710b6f5f21c25a92756467a171e7a
[5] LI Faqiang, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. Plant Cell, 2015, 27(5):1389-1408. http://d.old.wanfangdata.com.cn/Conference/9345297
[6] LI W W, CHEN M, LIU J M, et al. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setariaitalica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis[J]. Biochem Biophys Res Commun, 2015, 468(4):800-806. doi:  10.1016/j.bbrc.2015.11.035
[7] AVIN-WITTENBERG T, BAJDZIENKO K, WITTENBERG G, et al. Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation[J]. Plant Cell, 2015, 27(2):306-322. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1a3fd7b028c3b4d4f208b40eaccd42f
[8] BARROS J A S, CAVALCANTI J H, MEDEIROS D B, et al. Autophagy deficiency compromises alternative pathways of respiration following energy deprivation in Arabidopsis thaliana[J]. Plant Physiol, 2017, 175(1):62-76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3eea0121ed4626554fb60813951a24a6
[9] GUIBOILEAU A, OSPINA L A, YOSHIMOTO K, et al. Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability[J]. New Phytol, 2013, 199(3):683-694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/nph.12307
[10] MARSHALL R S, VIERSTRA R D. Autophagy:the master of bulk and selective recycling[J]. Ann Rev Plant Biol, 2018, 69(1):173-208. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227719502/
[11] INOUE Y, SUZUKI T, HATTORI M, et al. AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells[J]. Plant Cell Physiol, 2006, 47(12):1641-1652. doi:  10.1093/pcp/pcl031
[12] YANO K, SUZUKI T, MORIYASU Y. Constitutive autophagy in plant root cells[J]. Autophagy, 2007, 3(4):360-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4161/auto.4158
[13] KURUSU T, KOYANO T, HANAMATA S, et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development[J]. Autophagy, 2014, 10(5):878-888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4161/auto.28279
[14] KWON S I, CHO H J, JUNG J H, et al. The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis[J]. Plant J, 2010, 64(1):151-164. doi:  10.1111/j.1365-313X.2010.04315.x
[15] WANG Yan, YU Bingjie, ZHAO Jinping, et al. Autophagy contributes to leaf starch degradation[J]. Plant Cell, 2013, 25(4):1383-1399. doi:  10.1105/tpc.112.108993
[16] ISHIDA H, YOSHIMOTO K, IZUMI M, et al. Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process[J]. Plant Physiol, 2008, 148(1):142-155. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2528122
[17] WADA S, ISHIDA H, IZUMI M, et al. Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves[J]. Plant Physiol, 2009, 149(2):885-893. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2633819
[18] IZUMI M, WADA S, MAKINO A, et al. The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis[J]. Plant Physiol, 2010, 154(3):1196-1209. doi:  10.4161/psb.6.5.14949
[19] IZUMI M, HIDEMA J, WADA S. et al. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation[J]. Plant Physiol, 2015, 167(4):1307-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6fb493f04d7643f23dd702f79019b231
[20] IZUMI M, HIDEMA J, MAKINO A, et al. Autophagy contributes to nighttime energy availability for growth in Arabidopsis[J]. Plant Physiol, 2013, 161(4):1682-1693. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f78839ac33fe199b4212925cb0353cbd
[21] GHIGLIONE H O, GONZALEZ F G, SERRAGO R, et al. Autophagy regulated by day length determines the number of fertile florets in wheat[J]. Plant J, 2008, 55(6):1010-1024. doi:  10.1111-j.1365-313X.2008.03570.x/
[22] TOYOOKA K, OKAMOTO T, MINAMIKAWA T. Cotyledon cells of Vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components[J]. Cell Biol, 2001, 154(5):973-982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52a460c48e05080890836347bd3dae22
[23] YOSHIMOTO K, TAKANO Y, SAKAI Y. Autophagy in plants and phytopathogens[J]. FEBS Lett, 2010, 584(7):1350-1358. doi:  10.1016/j.febslet.2010.01.007
[24] 陈登举, 高培军, 吴兴波, 等.毛竹茎秆叶绿体超微结构及其发射荧光光谱特征[J].植物学报, 2013, 48(6):635-642. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201306005

CHEN Dengju, GAO Peijun, WU Xingbo, et al. Chloroplast ultrastructure and emission fluorescence spectrum characteristics for stems of Phyllostachys edulis[J]. Chin Bull Bot, 2013, 48(6):635-642. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201306005
[25] 刘琳, 王玉魁, 王星星, 等.毛竹出笋后快速生长期茎秆色素含量与反射光谱的相关性[J].生态学报, 2013, 33(9):2703-2711. http://d.old.wanfangdata.com.cn/Periodical/stxb201309008

LIU Lin, WANG Yukui, WANG Xingxing, et al. Correlation between pigment content and reflectance spectrum of Phyllostachys edulis stems during its rapid growth stage[J]. Acta Ecol Sin, 2013, 33(9):2703-2711. http://d.old.wanfangdata.com.cn/Periodical/stxb201309008
[26] 王星星, 刘琳, 张洁, 等.毛竹出笋后快速生长期内茎秆中光合色素和光合酶活性的变化[J].植物生态学报, 2012, 36(5):456-462. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201205011

WANG Xingxing, LIU Lin, ZHANG Jie, et al. Changes of photosynthetic pigment and photosynthetic enzyme activity in stems of Phyllostachys pubescens during rapid growth stage after shooting[J]. Chin J Plant Ecol, 2012, 36(5):456-462. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201205011
[27] 孙建飞, 翟建云, 马元丹, 等.毛竹快速生长期茎秆不同节间光合色素和光合酶活性的差异[J].植物学报, 2018, 53(6):773-781. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201806006

SUN Jianfei, ZHAI Jianyun, MA Yuandan, et al. Differences in photosynthetic pigments and photosynthetic enzyme activities in different internodes of Phyllostachys edulis during rapid growth stage[J]. Chin Bull Bot, 2018, 53(6):773-781. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201806006
[28] 程路芸, 温星, 马丹丹, 等.毛竹快速生长过程中碳水化合物的时空变化[J].浙江农林大学学报, 2017, 34(2):261-267. doi:  10.11833/j.issn.2095-0756.2017.02.009

CHENG Luyun, WEN Xing, MA Dandan, et al. Spatial and temporal change of carbohydrates during rapid growthprocesses of Phyllostachys edulis[J]. J Zhejiang A&F Univ, 2017, 34(2):261-267. doi:  10.11833/j.issn.2095-0756.2017.02.009
[29] 李丹丹, 许馨露, 翟建云, 等.毛竹笋竹快速生长期可溶性糖质量分数与PeTPS1/PeSnRK1基因表达分析[J].浙江农林大学学报, 2017, 34(6):1016-1023. doi:  10.11833/j.issn.2095-0756.2017.06.007

LI Dandan, XU Xinlu, ZHAI Jianyun, et al. Soluble sugar content and PeTPS1/PeSnRK1 gene expression in Phyllostachys edulis during rapid growth[J]. J Zhejiang A&F Univ, 2017, 34(6):1016-1023. doi:  10.11833/j.issn.2095-0756.2017.06.007
[30] 翟建云, 孙建飞, 马元丹, 等.毛竹快速生长期茎秆不同节间碳水化合物代谢的变化[J].竹子学报, 2018, 37(1):42-48. http://d.old.wanfangdata.com.cn/Periodical/zzyjhk201801007

ZHAI Jianyun, SUN Jianfei, MA Yuandan, et al. Changes of carbohydrates metabolism in differentinternodes of Phyllostachys edulis during rapid growth period[J]. J Bamboo Res, 2018, 37(1):42-48. http://d.old.wanfangdata.com.cn/Periodical/zzyjhk201801007
[31] CUI Kai, HE Caiyun, ZHANG Jianguo, et al. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. J Proteome Res, 2012, 11(4):2492-2507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de4beb21d09aa46b49ae25eec15709c1
[32] ZHOU Mingbing, YANG Ping, GAO Peijun, et al. Identification of differentially expressed sequence tags in rapidly elongating Phyllostachys pubescens internodes by suppressive subtractive hybridization[J]. Plant Mol Biol Rep, 2011, 29(1):224-231. doi:  10.1007/s11105-010-0222-0
[33] PENG Zhenhua, LU Ying, LI Lubing, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nat Gen, 2013, 45(4):456-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a02fa95506e0e8ed9342323810a072f
[34] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2001, 25(4):402-408. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3481461
[35] 任晨霞, 龚清秋.细胞自噬在植物碳氮营养中作用的研究进展[J].中国细胞生物学学报, 2014, 36(4):407-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbswxzz201404002

REN Chenxia, GONG Qingqiu. Progress on the involvement of plant autophagy incarbon and nitrogen utilization[J]. Chin J Cell Biol, 2014, 36(4):407-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbswxzz201404002
[36] HAN Shaojie, WANG Yan, ZHENG Xiyin, et al. Cytoplastic glyceraldehyde-3-phosphate dehydrogenases interact with ATG3 to negatively regulate autophagy and immunity in Nicotiana benthamiana[J]. Plant Cell, 2015, 27(4):1316-1331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1e7e9bd9b3aa69221ed00d63e73e26f0
[37] 刘洋, 张静, 王秋玲, 等.植物细胞自噬研究进展[J].植物学报, 2018, 53(1):5-16. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201801002

LIU Yang, ZHANG Jing, WANG Qiuling, et al. Research progress in plant autophagy[J]. Chin Bull Bot, 2018, 53(1):5-16. http://d.old.wanfangdata.com.cn/Periodical/zwxtb201801002
[38] KIRISAKO T, ICHIMURA Y, OKADA H, et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway[J]. J Cell Biol, 2000, 151(2):263-276. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=298f0688e42699bba40454e4d04a8a31
[39] 祝巧鸣, 娄帅通, 杨勇, 等.毛竹茎秆快速生长相关基因PeHSD1的功能探究[J].分子植物育种, 2018, 16(19):6269-6275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201819011

ZHU Qiaoming, LOU Shuaitong, YANG Yong, at al. The preliminary functional study of bamboo culm rapid growth related gene PeHSD1[J]. Mol Plant Breeding, 2018, 16(19):6269-6275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201819011
[40] 叶家其, 张毓婷, 傅鹰, 等.毛竹茎秆伸长过程中赤霉素生物合成、降解和信号转导关键基因的鉴定及表达分析[J].生物工程学报, 2019, 35(6):1-20. http://d.old.wanfangdata.com.cn/Periodical/swgcxb201904012

YE Jiaqi, ZHANG Yuting, FU Ying, et al. Genome-wide identification and expression analysis of gibberellin biosynthesis, metabolism and signaling familygenes in Phyllostachys edulis[J]. Chin J Biotechnol, 2019, 35(6):1-20. http://d.old.wanfangdata.com.cn/Periodical/swgcxb201904012