[1] 杨张钰, 陈小央, 李燕, 等. 517份玉米种质容重与其他品质性状相关性分析及候选基因挖掘[J]. 浙江农林大学学报, 2024, 41(4): 669−678. YANG Zhangyu, CHEN Xiaoyang, LI Yan, et al. Correlation analysis of test weight and other quality traits and candidate gene mining in 517 maize germplasms [J]. Journal of Zhejiang A&F University, 2024, 41(4): 669−678. DOI: 10.11833/j.issn.2095-0756.20240145.

YANG Zhangyu, CHEN Xiaoyang, LI Yan, et al. Correlation analysis of test weight and other quality traits and candidate gene mining in 517 maize germplasms [J]. Journal of Zhejiang A&F University, 2024, 41(4): 669−678. DOI: 10.11833/j.issn.2095-0756.20240145.
[2] 兰进好. 玉米开花期相关性状的QTL分析[J]. 西北植物学报, 2010, 30(3): 471−480. LAN Jinhao. QTL analysis on the flowering related traits in maize [J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(3): 471−480.

LAN Jinhao. QTL analysis on the flowering related traits in maize [J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(3): 471−480.
[3] 刘志斋, 郭荣华, 石云素, 等. 中国玉米地方品种核心种质花期相关性状的表型多样性研究[J]. 中国农业科学, 2008, 41(6): 1591−1602. LIU Zhizhai, GUO Ronghua, SHI Yunsu, et al. Phenotypic diversity of flowering-related traits of maize landraces from the core collection preserved in China national genebank [J]. Scientia Agricultura Sinica, 2008, 41(6): 1591−1602. DOI: 10.3864/j.issn.0578-1752.2008.06.004.

LIU Zhizhai, GUO Ronghua, SHI Yunsu, et al. Phenotypic diversity of flowering-related traits of maize landraces from the core collection preserved in China national genebank [J]. Scientia Agricultura Sinica, 2008, 41(6): 1591−1602. DOI: 10.3864/j.issn.0578-1752.2008.06.004.
[4] HALLAUER A R, MIRANDA FILHO J B. Quantitative Genetics in Maize Breeding[M]. Ames: Iowa State University Press, 1981. DOI: 10.1007/978-1-4419-0766-0.
[5] 刘飞, 黄娟, 杜千禧, 等. 苦荞重组自交系的RS和GABA的QTL定位及候选基因分析[J]. 浙江农林大学学报, 2025, 42(4): 703−713. LIU Fei, HUANG Juan, DU Qianxi, et al. QTL mapping and candidate gene analysis of RS and GABA based on the recombinant inbred lines (RILs) of Fagopyrum tataricum [J]. Journal of Zhejiang A&F University, 2025, 42(4): 703−713. DOI: 10.11833/j.issn.2095-0756.20240570.

LIU Fei, HUANG Juan, DU Qianxi, et al. QTL mapping and candidate gene analysis of RS and GABA based on the recombinant inbred lines (RILs) of Fagopyrum tataricum [J]. Journal of Zhejiang A&F University, 2025, 42(4): 703−713. DOI: 10.11833/j.issn.2095-0756.20240570.
[6] 魏海忠, 商伟, 钟世宜, 等. 利用重组自交系群体定位玉米生育期相关性状QTL[J]. 玉米科学, 2014, 22(1): 49−55. WEI Haizhong, SHANG Wei, ZHONG Shiyi, et al. Mapping of growth period related traits in maize using recombinant inbred lines [J]. Journal of Maize Sciences, 2014, 22(1): 49−55. DOI: 10.13597/j.cnki.maize.science.2014.01.011.

WEI Haizhong, SHANG Wei, ZHONG Shiyi, et al. Mapping of growth period related traits in maize using recombinant inbred lines [J]. Journal of Maize Sciences, 2014, 22(1): 49−55. DOI: 10.13597/j.cnki.maize.science.2014.01.011.
[7] 韩娅楠, 刘福建, 王瑞霞, 等. 玉米生育期QTL定位及上位性互作效应的遗传研究[J]. 华北农学报, 2010, 25(2): 84−87. HAN Ya’nan, LIU Fujian, WANG Ruixia, et al. QTL mapping and epistasis analysis of flowering related traits in maize [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(2): 84−87.

HAN Ya’nan, LIU Fujian, WANG Ruixia, et al. QTL mapping and epistasis analysis of flowering related traits in maize [J]. Acta Agriculturae Boreali-Sinica, 2010, 25(2): 84−87.
[8] 陈俊宇, 卢峰, 陈婉莹, 等. 玉米生育期相关性状QTL定位[J]. 江苏农业科学, 2022, 50(8): 63−68. CHEN Junyu, LU Feng, CHEN Wanying, et al. QTL mapping of growth period related traits in maize [J]. Jiangsu Agricultural Sciences, 2022, 50(8): 63−68. DOI: 10.15889/j.issn.1002-1302.2022.08.012.

CHEN Junyu, LU Feng, CHEN Wanying, et al. QTL mapping of growth period related traits in maize [J]. Jiangsu Agricultural Sciences, 2022, 50(8): 63−68. DOI: 10.15889/j.issn.1002-1302.2022.08.012.
[9] 王美兴, 任梦云, 黄益峰, 等. 浙江省玉米种质资源调查收集与鉴定评价[J]. 浙江农业科学, 2022, 63(12): 2785−2790. WANG Meixing, REN Mengyun, HUANG Yifeng, et al. Collection and indentification of maize germplasm resources in Zhejiang Province [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(12): 2785−2790. DOI: 10.16178/j.issn.0528-9017.20220003.

WANG Meixing, REN Mengyun, HUANG Yifeng, et al. Collection and indentification of maize germplasm resources in Zhejiang Province [J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(12): 2785−2790. DOI: 10.16178/j.issn.0528-9017.20220003.
[10] 周洋, 陈小央, 李燕, 等. 基于GWAS对348份玉米种质资源的籽粒容重性状的分析[J]. 中国农业大学学报, 2025, 30(1): 14−26. ZHOU Yang, CHEN Xiaoyang, LI Yan, et al. A GWAS-based research on ketest weight in 348 maize germplasm resources [J]. Journal of China Agricultural University, 2025, 30(1): 14−26. DOI: 10.11841/j.issn.1007-4333.2025.01.02.

ZHOU Yang, CHEN Xiaoyang, LI Yan, et al. A GWAS-based research on ketest weight in 348 maize germplasm resources [J]. Journal of China Agricultural University, 2025, 30(1): 14−26. DOI: 10.11841/j.issn.1007-4333.2025.01.02.
[11] 石云素. 玉米种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. SHI Yunsu. Descriptors and Data Standard for Maize ( Zea mays L. )[M]. Beijing: China Agriculture Press, 2006.

SHI Yunsu. Descriptors and Data Standard for Maize ( Zea mays L. )[M]. Beijing: China Agriculture Press, 2006.
[12] MAN J, GALLAGHER J P, BARTLETT M. Structural evolution drives diversification of the large LRR-RLK gene family [J]. New Phytologist, 2020, 226(5): 1492−1505. DOI: 10.1111/nph.16455.
[13] MAZAHERI M, HECKWOLF M, VAILLANCOURT B, et al. Genome-wide association analysis of stalk biomass and anatomical traits in maize [J]. BMC Plant Biology, 2019, 19(1): 45. DOI: 10.1186/s12870-019-1653-x.
[14] EVANS D E, MERMET S, TATOUT C. Advancing knowledge of the plant nuclear periphery and its application for crop science [J]. Nucleus, 2020, 11(1): 347−363. DOI: 10.1080/19491034.2020.1838697.
[15] PINTO V B, FERREIRA P G, VIDIGAL P M P, et al. Uncovering the transcriptional response of popcorn (Zea mays L. var. everta) under long-term aluminum toxicity [J]. Scientific Reports, 2021, 11: 19644. DOI: 10.1038/s41598-021-99097-z.
[16] GANGURDE S S, XAVIER A, NAIK Y D, et al. Two decades of association mapping: insights on disease resistance in major crops [J]. Frontiers in Plant Science, 2022, 13: 1064059. DOI: 10.3389/fpls.2022.1064059.
[17] KUANG Tianhui, HU Can, SHAW R K, et al. A potential candidate gene associated with the angles of the ear leaf and the second leaf above the ear leaf in maize [J]. BMC Plant Biology, 2023, 23(1): 540. DOI: 10.1186/s12870-023-04553-9.
[18] MA Juan, CAO Yanyong. Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction [J]. Frontiers in Plant Science, 2021, 12: 690059. DOI: 10.3389/fpls.2021.690059.
[19] ZENDA T, LIU Songtao, WANG Xuan, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines [J]. International Journal of Molecular Sciences, 2019, 20(6): 1268. DOI: 10.3390/ijms20061268.
[20] 李玉玲, 李学慧, 董永彬, 等. 利用相同来源F2∶3和BC2S1群体定位玉米生育期QTL[J]. 华北农学报, 2007, 22(6): 38−43. LI Yuling, LI Xuehui, DONG Yongbin, et al. QTL mapping of developmental stages using F2∶3 and BC2S1 populations derived from the same cross in maize [J]. Acta Agriculturae Boreali-Sinica, 2007, 22(6): 38−43.

LI Yuling, LI Xuehui, DONG Yongbin, et al. QTL mapping of developmental stages using F2∶3 and BC2S1 populations derived from the same cross in maize [J]. Acta Agriculturae Boreali-Sinica, 2007, 22(6): 38−43.
[21] 马拴红, 万炯, 梁瑞清, 等. 玉米开花期转录因子候选基因的关联分析[J]. 中国农业科学, 2022, 55(1): 12−25. MA Shuanhong, WAN Jiong, LIANG Ruiqing, et al. Candidate gene association analysis of maize transcription factors in flowering time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12−25. DOI: 10.3864/j.issn.0578-1752.2022.01.002.

MA Shuanhong, WAN Jiong, LIANG Ruiqing, et al. Candidate gene association analysis of maize transcription factors in flowering time [J]. Scientia Agricultura Sinica, 2022, 55(1): 12−25. DOI: 10.3864/j.issn.0578-1752.2022.01.002.
[22] 党昆泰. ZmIAA29调控玉米生育期的分子机制研究[D]. 郑州: 河南农业大学, 2023. DANG Kuntai. Study on the Molecular Mechanism of ZmIAA29 Regulating the Growth Period of Maize [D]. Zhengzhou: Henan Agricultural University, 2023. DOI: 10.27117/d.cnki.ghenu.2023.000204.

DANG Kuntai. Study on the Molecular Mechanism of ZmIAA29 Regulating the Growth Period of Maize [D]. Zhengzhou: Henan Agricultural University, 2023. DOI: 10.27117/d.cnki.ghenu.2023.000204.
[23] 郭爽, 王栋, 聂蕾, 等. 玉米开花期相关性状的QTL定位与候选基因分析[J]. 种子, 2023, 42(6): 1−8. GUO Shuang, WANG Dong, NIE Lei, et al. QTL mapping and candidate gene analysis on related traits of maize at flowering stage [J]. Seed, 2023, 42(6): 1−8. DOI: 10.16590/j.cnki.1001-4705.2023.06.001.

GUO Shuang, WANG Dong, NIE Lei, et al. QTL mapping and candidate gene analysis on related traits of maize at flowering stage [J]. Seed, 2023, 42(6): 1−8. DOI: 10.16590/j.cnki.1001-4705.2023.06.001.
[24] 沈辰. 山核桃COP1等成花相关基因的克隆及其表达特性分析[D]. 杭州: 浙江农林大学, 2014. SHEN Chen. Cloning and Expression Analysis of FLOWERING Genes in Carya cathayensis[D]. Hangzhou: Zhejiang A&F University, 2014.

SHEN Chen. Cloning and Expression Analysis of FLOWERING Genes in Carya cathayensis[D]. Hangzhou: Zhejiang A&F University, 2014.
[25] YI Fei, GU Wei, CHEN Jian, et al. High temporal-resolution transcriptome landscape of early maize seed development [J]. The Plant Cell, 2019, 31(5): 974−992. DOI: 10.1105/tpc.18.00961.
[26] FANG Lei, HOU Xingliang, LEE L Y C, et al. AtPV42a and AtPV42b redundantly regulate reproductive development in Arabidopsis thaliana [J]. PLoS One, 2011, 6(4): e19033. DOI: 10.1371/journal.pone.0019033.
[27] KUSHWAHA H R, SINGH A K, SOPORY S K, et al. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L. ) Heynh and Oryza sativa L. reveals their developmental and stress regulation [J]. BMC Genomics, 2009, 10: 200. DOI: 10.1186/1471-2164-10-200.
[28] GENDRON J M, STAIGER D. New horizons in plant photoperiodism [J]. Annual Review of Plant Biology, 2023, 74: 481−509. DOI: 10.1146/annurev-arplant-070522-055628.
[29] BERNIER G, HAVELANGE A, HOUSSA C, et al. Physiological signals that induce flowering [J]. The Plant Cell, 1993, 5(10): 1147−1155. DOI: 10.1105/tpc.5.10.1147.
[30] FIGUEROA C M, LUNN J E. A tale of two sugars: trehalose 6-phosphate and sucrose [J]. Plant Physiology, 2016, 172(1): 7−27. DOI: 10.1104/pp.16.00417.
[31] WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana [J]. Science, 2013, 339(6120): 704−707. DOI: 10.1126/science.1230406.
[32] LI Jianming, CHORY J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction [J]. Cell, 1997, 90(5): 929−938. DOI: 10.1016/S0092-8674(00)80357-8.
[33] LI J, NAM K H, VAFEADOS D, et al. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis [J]. Plant Physiology, 2001, 127(1): 14−22. DOI: 10.1104/pp.127.1.14.
[34] LI Jianming, NAM K H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase [J]. Science, 2002, 295(5558): 1299−1301. DOI: 10.1126/science.1065769.
[35] HE Junxian, GENDRON J M, YANG Yanli, et al. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 10185−10190. DOI: 10.1073/pnas.152342599.
[36] WANG Zhiyong, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis [J]. Developmental Cell, 2002, 2(4): 505−513. DOI: 10.1016/S1534-5807(02)00153-3.
[37] YIN Yanhai, WANG Zhiyong, MORA-GARCIA S, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J]. Cell, 2002, 109(2): 181−191. DOI: 10.1016/S0092-8674(02)00721-3.
[38] COLASANTI J, TREMBLAY R, WONG A Y M, et al. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants [J]. BMC Genomics, 2006, 7: 158. DOI: 10.1186/1471-2164-7-158.
[39] COLASANTI J, YUAN Zhuang, SUNDARESAN V. The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize [J]. Cell, 1998, 93(4): 593−603. DOI: 10.1016/S0092-8674(00)81188-5.
[40] MUSZYNSKI M G, DAM T, LI Bailin, et al. Delayed flowering1Encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize[J]. Plant Physiology, 2006, 142(4): 1523−1536. DOI: 10.1104/pp.106.088815.
[41] MENG Xin, MUSZYNSKI M G, DANILEVSKAYA O N. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize [J]. The Plant Cell, 2011, 23(3): 942−960. DOI: 10.1105/tpc.110.081406.
[42] GUO Li, WANG Xuehan, ZHAO Min, et al. Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering-time adaptation[J]. Current Biology, 2018, 28(18): 3005−3015. e4. DOI: 10.1016/j.cub.2018.07.029.
[43] LI Wenzong, HAO Zhuanfang, PANG Junling, et al. Effect of water-deficit on tassel development in maize [J]. Gene, 2019, 681: 86−92. DOI: 10.1016/j.gene.2018.09.018.
[44] 刘月娥. 玉米对区域光、温、水资源变化的响应研究[D]. 北京: 中国农业科学院, 2013. LIU Yue’e. Study on the Response of Maize to the Changes of Regional Light, Temperature and Water Resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.

LIU Yue’e. Study on the Response of Maize to the Changes of Regional Light, Temperature and Water Resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.