[1] RUMPEL C, CHABBI A, NUNAN N, et al. Impact of landuse change on the molecular composition of soil organic matter [J]. J Anal Appl Pyrolysis, 2009, 85(1): 431 − 434.
[2] BUURMAN P, ROSCOE R. Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study [J]. Eur J Soil Sci, 2011, 62(2): 253 − 266.
[3] HARRISON-KIRK T, BEARE M H, MEENKEN E D, et al. Soil organic matter and texture affect responses to dry/wet cycles: changes in soil organic matter fractions and relationships with C and N mineralisation [J]. Soil Biol Biochem, 2014, 74: 50 − 60.
[4] NOTTINGHAM A T, TURNER B L, STOTT A W, et al. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils [J]. Soil Biol Biochem, 2015, 80: 26 − 33.
[5] HASHIMOTO Y, YAMAGUCHI N. Chemical speciation of cadmium and sulfur K-edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron [J]. Soil Sci Soc Am J, 2013, 77(4): 1189 − 1198.
[6] LEIGH J, FITTER A, HODGE A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria [J]. FEMS Microbiol Ecol, 2011, 76(3): 428 − 438.
[7] GUDE A, KANDELER E, GLEIXNER G. Input related microbial carbon dynamic of soil organic matter in particle size fractions [J]. Soil Biol Biochem, 2012, 47: 209 − 219.
[8] ZIMOV S, SCHUUR E, CHAPIN Ⅲ F S. Permafrost and the global carbon budget [J]. Science, 2006, 312(5780): 1612 − 1613.
[9] SANTOIEMMA G. Recent methodologies for studying the soil organic matter [J]. Appl Soil Ecol, 2017, 123: 546 − 550.
[10] TRUMBORE S, CZIMCZIK C. An uncertain future for soil carbon [J]. Science, 2008, 321(5895): 1455 − 1456.
[11] BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere–soil carbon transfer as a function of soil depth [J]. Nature, 2018, 559(7715): 599 − 602.
[12] COONAN E, KIRKBY C, KIRKEGAARD J, et al. Microorganisms and nutrient stoichiometry as mediators of soil organic matter dynamics [J]. Nutr Cycling Agroecosystems, 2020, 117: 273 − 298.
[13] MARSCHNER B, BRODOWSKI S, DREVES A, et al. How relevant is recalcitrance for the stabilization of organic matter in soils? [J]. J Plant Nutr Soil Sci, 2008, 171: 91 − 110.
[14] BOL R, POIRIER N, BALESDENT J, et al. Molecular turnover time of soil organic matter in particle-size fractions of an arable soil [J]. Rapid Commun Mass Spectrom, 2009, 23(16): 2551 − 2558.
[15] MASCIANDARO G, CECCANTI B, GALLARDO-LANCHO J F. Organic matter properties in cultivated versus set-aside arable soils [J]. Agric Ecosystems Environ, 1998, 67(2): 267 − 274.
[16] DAI X Y, PING C L, MICHAELSON G. Characterizing soil organic matter in Arctic tundra soils by different analytical approaches [J]. Org Geochem, 2002, 33(4): 407 − 419.
[17] VERDE R, BUURMAN P, MARTINEZ-CORTIZAS A, et al. NaOH-extractable organic matter of andic soils from Galicia (NW Spain) under different land use regimes: a pyrolysis GC/MS study [J]. Eur J Soil Sci, 2008, 59: 1096 − 1110.
[18] SANTANA G S, KNICKER H, GONZÁLEZ-VILA F J, et al. The impact of exotic forest plantations on the chemical composition of soil organic matter in southern Brazil as assessed by Py-GC/MS and lipid extracts study [J]. Geoderma Reg, 2014, 4: 11 − 19.
[19] BROCK O, KALBITZ K, ABSALAH S, et al. Effects of development stage on organic matter transformation in Podzols [J]. Geoderma, 2020. doi: 10.1016/j.geoderma.2020.114625.
[20] WICKLAND K P, NEFF J C. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls [J]. Biogeochemistry, 2008, 87(1): 29 − 47.
[21] DIJKSTRA E F, BOON J J, van MOURIK J M. Analytical pyrolysis of a soil profile under Scots pine [J]. Eur J Soil Sci, 1998, 49(2): 295 − 304.
[22] JIMÉNEZ-GONZÁLEZ M A, ÁLVAREZ A M, CARRAL P, et al. Influence of soil forming factors on the molecular structure of soil organic matter and carbon levels [J]. Catena, 2020, 189: 104501. doi: 10.1016/j.catena.2020.104501.
[23] GRANDY A, NEFF J, WEINTRAUB M. Carbon structure and enzyme activities in alpine and forest ecosystems [J]. Soil Biol Biochem, 2007, 39(11): 2701 − 2711.
[24] VANCAMPENHOUT K, WOUTERS K, de VOS B, et al. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions: a pyrolysis-GC/MS study [J]. Soil Biol Biochem, 2009, 41(3): 568 − 579.
[25] LEINWEBER P, SCHULTEN H R. Advances in analytical pyrolysis of soil organic matter [J]. J Anal Appl Pyrolysis, 1999, 49(1): 359 − 383.
[26] KÖGEL-KNABNER I. Analytical approaches for characterizing soil organic matter [J]. Org Geochem, 2000, 31: 609 − 625.
[27] LÜTZOW M V, KÖGEL-KNABNER I, EKSCHMITT K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review [J]. Eur J Soil Sci, 2006, 57: 426 − 445.
[28] MEHRABANIAN M. Molecular geochemistry of soil organic matter by pyrolysis gas chromatography/mass spectrometry (GC/MS) technique: a review [J]. J Soil Sci Environ Manage, 2013, 4(2): 11 − 16.
[29] DERENNE S, QUÉNÉA K. Analytical pyrolysis as a tool to probe soil organic matter [J]. J Anal Appl Pyrolysis, 2015, 111: 108 − 120.
[30] MA Shuqin, CHEN Youchao, LU Xuyang, et al. Soil organic matter chemistry: based on pyrolysis-gas chromatography- mass spectrometry (Py-GC/MS) [J]. Mini-Rev Org Chem, 2018, 15(5): 389 − 403.
[31] 武天云, SCHOENAU J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717 − 722.

WU Tianyun, SCHOENAU J J, LI Fengmin, et al. Concepts and relative analytical techniques of soil organic matter [J]. Chin J Appl Ecol, 2004, 15(4): 717 − 722.
[32] de LA ROSA J M, FARIA S R, VARELA M E, et al. Characterization of wildfire effects on soil organic matter using analytical pyrolysis [J]. Geoderma, 2012, 191: 24 − 30.
[33] GLEIXNER G. Soil organic matter dynamics: a biological perspective derived from the use of compound-specific isotopes studies [J]. Ecol Res, 2013, 28(5): 683 − 695.
[34] 窦森. 土壤有机质[M]. 北京: 科学出版社, 2010.
[35] NARDI S, CONCHERI G, PIZZEGHELLO D, et al. Soil organic matter mobilization by root exudates [J]. Chemosphere, 2000, 41(5): 653 − 658.
[36] 张勇, 庞学勇, 包维楷, 等. 土壤有机质及其研究方法综述[J]. 世界科技研究与发展, 2005, 27(5): 78 − 84.

ZHANG Yong, PANG Xueyong, BAO Weikai, et al. A review of soil organic matter and its research methods [J]. World Sci-Tech R&D, 2005, 27(5): 78 − 84.
[37] 李娜, 盛明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796 − 812.

LI Na, SHENG Ming, YOU Mengyang, et al. Advancement in research on application of 13C NMR techniques to exploration of chemical structure of soil organic matter [J]. Acta Pedol Sin, 2019, 56(4): 796 − 812.
[38] 金鑫鑫, 汪景宽, 孙良杰, 等. 稳定13C同位素示踪技术在农田土壤碳循环和团聚体固碳研究中的应用进展[J]. 土壤, 2017, 49(2): 217 − 224.

JIN Xinxin, WANG Jingkuan, SUN Liangjie, et al. Progress of carbon cycle in farmland and sequestration in soil aggregates revealed by stable 13C isotope [J]. Soils, 2017, 49(2): 217 − 224.
[39] YASSIR I, BUURMAN P. Soil organic matter chemistry changes upon secondary succession in Imperata Grasslands, Indonesia: a pyrolysis - GC/MS study [J]. Geoderma, 2012, 173: 94 − 103.
[40] WHITE D, GARLAND D S, PING C L, et al. Characterizing soil organic matter quality in Arctic soil by cover type and depth [J]. Cold Reg Sci Technol, 2004, 38: 63 − 73.
[41] KAAL J, MARTÍNEZ-CORTIZAS A, NIEROP K G J, et al. A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain [J]. Appl Geochem, 2008, 23(8): 2395 − 2405.
[42] LU Xuyang, MA Shuqin, CHEN Youchao, et al. Squalene found in alpine grassland soils under a harsh environment in the Tibetan Plateau, China [J]. Biomolecules, 2018, 8(4): 154. doi: 10.3390/biom8040154.
[43] NEFF J, TOWNSEND A, GLEIXNER G, et al. Variable effects of nitrogen additions on the stability and turnover of soil C [J]. Nature, 2002, 419(6910): 915 − 917.
[44] SCHULTEN H R, SCHNITZER M. The chemistry of soil organic nitrogen: a review [J]. Biol Fert Soils, 1997, 26(1): 1 − 15.
[45] PROKUSHKIN A S, GLEIXNER G, McDOWELL W H, et al. Source and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia[J]. Global Biogeochem Cycles, 2007, 21(4): GB4003. doi: 10.1029/2007GB002938.
[46] HERNÁNDEZ Z, ALMENDROS G. Biogeochemical factors related with organic matter degradation and C storage in agricultural volcanic ash soils [J]. Soil Biol Biochem, 2012, 44(1): 130 − 142.
[47] SUÁREZ-ABELENDA M, KAAL J, CAMPS-ARBESTAIN M, et al. Molecular characteristics of permanganate- and dichromate-oxidation-resistant soil organic matter from a black-C-rich colluvial soil [J]. Soil Res, 2013, 52(2): 164 − 179.
[48] ARTEMYEVA Z, DANCHENKO N, KOLYAGIN Y, et al. Chemical structure of soil organic matter and its role in aggregate formation in Haplic Chernozem under the contrasting land use variants [J]. Catena, 2021, 204(6): 105403. doi:10.1016/j.catena.2021.105403.
[49] CHEN Qiuyu, NIU Bin, HU Yilun, et al. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms [J]. Sci Total Environ, 2020, 714: 136787. doi: 10.1016/j.scitotenv.2020.136787.
[50] ANDERSEN S K, WHITE D M. Determining soil organic matter quality under anaerobic conditions in arctic and subarctic soils [J]. Cold Reg Sci Technol, 2006, 44(2): 149 − 158.
[51] 马书琴, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤CO2 排放的影响[J]. 草业科学, 2019, 36(4): 960 − 969.

MA Shuqin, LU Xuyang. Effects of soil organic matter chemical quantity on carbon dioxide emissions in alpine grassland soils in Northern Tibet [J]. Pratacult Sci, 2019, 36(4): 960 − 969.
[52] HEUMANN S, SCHLICHTING A, BÖTTCHER J, et al. Sterols in soil organic matter in relation to nitrogen mineralization in sandy arable soils [J]. J Plant Nutr Soil Sci, 2011, 174(4): 576 − 586.
[53] MASCIANDARO G, CECCANTI B. Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances [J]. Soil Tillage Res, 1999, 51(1): 129 − 137.
[54] GIRONA-GARCÍA A, BADÍA-VILLAS D, JIMÉNEZ-MORILLO N T, et al. Changes in soil organic matter composition after Scots pine afforestation in a native European beech forest revealed by analytical pyrolysis (Py-GC/MS) [J]. Sci Total Environ, 2019, 691: 1155 − 1161.
[55] SANTANA G, KNICKER H, GONZÁLEZ-VILA F, et al. The impact of exotic forest plantations on the chemical composition of soil organic matter in Southern Brazil as assessed by Py-GC/MS and lipid extracts study [J]. Geoderma Reg, 2015, 4: 11 − 19.
[56] MIN K, SUSEELA V. Plant invasion alters the Michaelis-Menten kinetics of microbial extracellular enzymes and soil organic matter chemistry along soil depth [J]. Biogeochemistry, 2020, 150(2): 181 − 196.
[57] LI Zhe, ZHANG Zhongsheng, LI Min, et al. Molecular fingerprints of soil organic carbon in wetlands covered by native and non-native plants in the Yellow River Delta [J]. Wetlands, 2020, 40(6): 2189 − 2198.
[58] RAHMONOV O, KOWALSKI W, BEDNAREK R. Characterization of the soil organic matter and plant tissues in an initial stage of the plant succession and soil development by means of curie-point pyrolysis coupled with GC-MS [J]. Eurasian Soil Sci, 2010, 43: 1557 − 1568.
[59] CONG Weiwei, REN Tusheng, LI Baoguo. Changes in soil organic matter composition after afforestation of arable farmland in northeast China [J]. Chem Ecol, 2016, 32(3): 201 − 220.
[60] LIN D S, GREENWOOD P F, GEORGE S G, et al. The development of soil organic matter in restored biodiverse Jarrah forests of south-western Australia as determined by ASE and GCMS [J]. Environ Sci Poll Res Int, 2011, 18: 1070 − 1078.
[61] SILES J A, CAJTHAML T, FILIPOVÁ A, et al. Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils [J]. Soil Biol Biochem, 2017, 112: 1 − 13.
[62] BECKER J N, DIPPOLD M A, HEMP A, et al. Ashes to ashes: characterization of organic matter in Andosols along a 3400 m elevation transect at Mount Kilimanjaro using analytical pyrolysis [J]. Catena, 2019, 180: 271 − 281.
[63] CAMPO J, NIEROP K G J, CAMMERAAT E, et al. Application of pyrolysis-gas chromatography/mass spectrometry to study changes in the organic matter of macro-and microaggregates of a Mediterranean soil upon heating [J]. J Chromatogr A, 2011, 1218(30): 4817 − 4827.
[64] XU Chunhao, GUO Laodong, PING Chienlu, et al. Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska [J]. J Geophys Res, 2009, 114: G03002. doi: 10.1029/2008JG000846.
[65] XIONG Li, LIU Xiaoyu, VINCI G, et al. Molecular changes of soil organic matter induced by root exudates in a rice paddy under CO2 enrichment and warming of canopy air [J]. Soil Biol Biochem, 2019. doi: 10.1016/j.soilbio.2019.107544.
[66] GENG Jing, CHENG Shulan, FANG Huajun, et al. Different molecular characterization of soil particulate fractions under N deposition in a subtropical forest [J]. Forests, 2019, 10: 914. doi: 10.3390/f10100914.
[67] GRANDY A S, SINSABAUGH R L, NEFF J C, et al. Nitrogen deposition effects on soil organic matter chemistry are linked to variation in enzymes, ecosystems and size fractions [J]. Biogeochemistry, 2008, 91(1): 37 − 49.
[68] GENG Jing, FANG Huajun, CHENG Shulan, et al. Effects of N deposition on the quality and quantity of soil organic matter in a boreal forest: contrasting roles of ammonium and nitrate [J]. Catena, 2021, 198: 104996. doi: 10.1016/j.catena. 2020.104996.
[69] CHEN Youchao, SUN Jian, XIE Fangting, et al. Litter chemical structure is more important than species richness in affecting soil carbon and nitrogen dynamics including gas emissions from an alpine soil [J]. Biol Fert Soils, 2015, 51(7): 791 − 800.
[70] WHITE D, BEYER L. Pyrolysis-gas chromatography/mass spectrometry and pyrolysis-gas chromatography/flame ionization detection analysis of three Antarctic soils [J]. J Anal Appl Pyrolysis, 1999, 50(1): 63 − 76.
[71] STEWART C E, NEFF J C, AMATANGELO K L, et al. Vegetation effects on soil organic matter chemistry of aggregate fractions in a Hawaiian forest [J]. Ecosystems, 2011, 14(3): 382 − 397.
[72] GALLOIS N, TEMPLIER J, DERENNE S. Pyrolysis-gas chromatography-mass spectrometry of the 20 protein amino acids in the presence of TMAH [J]. J Anal Appl Pyrolysis, 2007, 80(1): 216 − 230.
[73] ZAMAN M, CHANG S X. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems [J]. Biol Fertil Soils, 2004, 39(4): 269 − 279.
[74] GRANDY A S, NEFF J C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function [J]. Sci Total Environ, 2008, 404(2): 297 − 307.
[75] VANCAMPENHOUT K, de VOS B, WOUTERS K, et al. Organic matter of subsoil horizons under broadleaved forest: highly processed or labile and plant-derived? [J]. Soil Biol Biochem, 2012, 50: 40 − 46.
[76] SUÁREZ-ABELENDA S M, BUURMAN P, CAMPS ARBESTAIN M, et al. Comparing NaOH-extractable organic matter of acid forest soils that differ in their pedogenic trends: a pyrolysis-GC/MS study [J]. Eur J Soil Sci, 2011, 62: 834 − 848.
[77] HUANG Y S, EGLINTON G, van der HAGE E R E, et al. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques [J]. Eur J Soil Sci, 1998, 49(1): 1 − 15.
[78] STURSOVA M, SINSABAUGH R L. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation [J]. Soil Biol Biochem, 2008, 40(2): 550 − 553.
[79] SCHNITZER M, MCARTHUR D F E, SCHULTEN H R, et al. Long-term cultivation effects on the quantity and quality of organic matter in selected Canadian prairie soils [J]. Geoderma, 2006, 130(1): 141 − 156.
[80] DONG Xinliang, LI Mozhi, LIN Qimei, et al. Soil Na+ concentration controls salt-affected soil organic matter components in Hetao region China [J]. J Soils Sediments, 2019, 19(3): 1120 − 1129.
[81] SCHULTEN H, MONREAL C, SCHNITZER M. Effect of long-term cultivation on the chemical structure of soil organic matter [J]. Naturwissenschaften, 1995, 82: 42 − 44.
[82] CHEN Youchao, SUN Jian, XIE Fangting, et al. Non-additive effects of litter diversity on greenhouse gas emissions from alpine steppe soil in Northern Tibet [J]. Sci Rep, 2015, 5: 17664. doi: 17610.11038/srep17664.
[83] ASSIS C, GONZÁLEZ-PÉREZ J, de LA ROSA J, et al. Analytical pyrolysis of humic substances from a Latosol (Typic Hapludox) under different land uses in Minas Gerais, Brazil [J]. J Anal Appl Pyrolysis, 2011, 93: 120 − 128.
[84] DIECKOW J, MIELNICZUK J, GONZÁLEZ-VILA F J, et al. No-till cropping systems and N fertilisation influences on organic matter composition of physical fractions of a subtropical Acrisol as assessed by analytical pyrolysis (Py-GC/MS) [J]. Geoderma, 2006, 135: 260 − 268.
[85] PARDO-FERNÁNDEZ M T, ALMENDROS-MARTÍN G, ZANCADA-FERNÁNDEZ M C, et al. Cultivation-induced effects on the organic matter in degraded southern African soils [J]. Commun Soil Sci Plant Anal, 2012, 43(3): 541 − 555.
[86] OLIVEIRA D M D S, SCHELLEKENS J, CERRI C E P. Molecular characterization of soil organic matter from native vegetation-pasture-sugarcane transitions in Brazil [J]. Sci Total Environ, 2016, 548/549: 450 − 462.
[87] KOV R, CAMPS-ARBESTAIN M, CALVELO-PEREIRA R, et al. A farm-scale investigation of the organic matter composition and soil chemistry of Andisols as influenced by land use and management [J]. Biogeochemistry, 2018, 140: 65 − 79.
[88] ZHANG Zhongsheng, WANG Jianjim, LYU Xiangguo, et al. Impacts of land use change on soil organic matter chemistry in the Everglades, Florida: a characterization with pyrolysis-gas chromatography-mass spectrometry [J]. Geoderma, 2019, 338: 393 − 400.
[89] JIMÉNEZ-MORILLO N T, de LA ROSA J M, WAGGONER D, et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover [J]. Catena, 2016, 145: 266 − 273.
[90] CERTINI G. Effects of fire on properties of forest soils: a review [J]. Oecologia, 2005, 143(1): 1 − 10.
[91] KNICKER H, GONZÁLEZ-VILA F J, POLVILLO O, et al. Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster) [J]. Soil Biol Biochem, 2005, 37(4): 701 − 718.
[92] DE LA ROSA J M, GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VÁZQUEZ R, et al. Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest [J]. Catena, 2008, 74(3): 296 − 303.
[93] KIERSCH K, KRUSE J, ECKHARDT K-U, et al. Impact of grassland burning on soil organic matter as revealed by a synchrotron- and pyrolysis-mass spectrometry-based multi-methodological approach [J]. Org Geochem, 2012, 44: 8 − 20.
[94] TINOCO P, ALMENDROS G, SANZ J, et al. Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils [J]. Org Geochem, 2006, 37: 1995 − 2018.
[95] NEFF J C, HARDEN J W, GLEIXNER G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska [J]. Can J For Res, 2005, 35(9): 2178 − 2187.
[96] NOCENTINI C, CERTINI G, KNICKER H, et al. Nature and reactivity of charcoal produced and added to soil during wildfire are particle-size dependent [J]. Org Geochem, 2010, 41(7): 682 − 689.
[97] CHEN Huan, RHOADES C C, CHOW A T. Characteristics of soil organic matter 14 years after a wildfire: A pyrolysis-gas-chromatography mass spectrometry (Py-GC-MS) study [J]. J Anal Appl Pyrolysis, 2020, 152: 104922. doi: 10.1016/j.jaap.2020.104922.
[98] de LA ROSA J M, GONZÁLEZ-PÉREZ J A, GONZÁLEZ-VILA F J, et al. Medium term effects of fire induced soil organic matter alterations on Andosols under Canarian pine (Pinus canariensis) [J]. J Anal ApplPyrolysis, 2013, 104: 269 − 279.
[99] FARIA S R, de LA ROSA J M, KNICKER H, et al. Molecular characterization of wildfire impacts on organic matter in eroded sediments and topsoil in Mediterranean eucalypt stands [J]. Catena, 2015, 135: 29 − 37.
[100] LI Jiangye, ZHANG Qichun, LI Yong, et al. Effects of long-term mowing on the fractions and chemical composition of soil organic matter in a semiarid grassland [J]. Biogeosciences, 2017, 14(10): 2685 − 2696.
[101] SPACCINI R, SONG X, COZZOLINO V, et al. Molecular evaluation of soil organic matter characteristics in three agricultural soils by improved off-line thermochemolysis: the effect of hydrofluoric acid demineralisation treatment [J]. Anal Chim Acta, 2013, 802: 46 − 55.
[102] DORADO J, ALMENDROS G, GONZáLEZ-VILA F J. Response of humic acid structure to soil tillage management as revealed by analytical pyrolysis [J]. J Anal Appl Pyrolysis, 2016, 117: 56 − 63.
[103] PISANI O, HADDIX M L, CONANT R T, et al. Molecular composition of soil organic matter with land-use change along a bi-continental mean annual temperature gradient [J]. Sci Total Environ, 2016, 573: 470 − 480.
[104] GLEIXNER G, BOL R, BALESDENT J. Molecular insight into soil carbon turnover [J]. Rapid Commun Mass Spectrom, 1999, 13(13): 1278 − 1283.
[105] ARANDA V, MACCI C, PERUZZI E, et al. Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost [J]. J Environ Manage, 2015, 147: 278 − 285.
[106] ESHETU B, JANDL G, LEINWEBER P. Compost changed soil organic matter molecular composition: a Py-GC/MS and Py-FIMS study [J]. Compost Sci Util, 2013, 20: 230 − 238.
[107] NIEROP K G J, PULLEMAN M M, MARINISSEN J C Y. Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques [J]. Soil Biol Biochem, 2001, 33(6): 755 − 764.